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SECTION 1 

INTRODUCTION 

Military aircraft control system actuators are high performance components of the 
flight control system required to quickly and precisely position the control surfaces with a 
sufficiently damped transient response. In addition, actuators on some control surfaces axe 
flight critical, requiring high reliability which cannot be achieved in a cost effective manner 
using an actuator with no redundancy. Therefore, redundancy is used to give the actuators 
a fault tolerant capability (Le. the capability of accommodating one or more failures). For 
fault-tolerant actuators, the real-time fault diagnosis and failure management systems must 
be able to accommodate failures quickly, allowing only small transients. The performance 
and fault tolerance requirements result in a complex system which requires frequent 
maintenance and which is difficult to test and repair. As a result, according to one study of 
the F-16 flight control system (FCS) reported in Reference 1, actuators are second only to 
sensors of F-16 FCS components in number of failures and the maintenance required. 

Some possible approaches to improving the reliability and maintainability of 
actuators, as well as reducing the frequency of maintenance required, are to improve the 
reliability of the components, replace components by more reliable alternatives, ani 
redesign the architecture to make it simpler. These approaches are currently being 
examined in the technical community. One area that has not been investigated is improving 
the fault diagnosis and failure management on actuators. Existing military aircraft control 
system actuators, for the most part, have a very basic capability which results in a high 
false alarm rate. A study of the maintenance of F-18 horizontal stabilator actuators 
(Reference 2) found that the second leading cause of maintenance actions (excluding 
maintenance for reasons other than actuator defects or failures) was for "failed to operate 
for unknown reasons," requiring 20% of the maintenance actions and 28% of the man- 
hours. Similarly, "failures which could not be duplicated accounted for 13% of the 
maintenance actions required for an F-14 spoiler actuator according to a maintenance study 
described in Reference 3. 

Significantly reducing the false alarms produced by the fault diagnostic system on 
aircraft control system actuators would improve their maintainability and reliability. To 
reduce false alarms while continuing to accommodate failures quickly with little noticeable 
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transient requires greater sophistication in the fault diagnosis and failure management 
system. The application of artificial intelligence technology is one approach which may 
have significant potential in this regard. The effort documented in this report investigates 
this approach, in conjunction with existing and algorithmic strategies, to aircraft flight 
control system actuator fault diagnosis and failure management. This study was sponsored 
by NASA Ames Research Center under contract NAS2- 12404 entitled "Intelligent Fault 
Diagnosis and Failure Management of Flight Control Actuation Systems." The specific 
goals of this contract were twofold 

To assess the applicability of artificial intelligence methods and techniques to 
aircraft flight control system actuator real-time fault diagnosis and failure 
management. 

To make recommendations for a fault diagnosis and failure management system 
based on the investigation of artificial intelligence technology in conjunction with 
existing approaches. 

Implicit in considering the use of artificial intelligence as well as algorithmic methods of 
failure diagnosis and failure management is the availability of digital processing capability. 
Some of the more recent actuators use the flight control computer for implementing the fault 
diagnosis and failure management systems. Placing dedicated microprocessors on future 
actuators is also presently being investigated. 

A brief general review of fault diagnosis and failure management is presented in 
Section 2. This section provides background for examining the fault diagnosis and failure 
management systems of aircraft actuators and for assessing artificial intelligence approaches 
to fault diagnosis. Section 3 examines the fault diagnosis and failure management systems 
of current operational and experimental dual tandem actuators. Dual tandem actuators were 
considered in this study because they require significant active fault diagnosis and failure 
management capability. The results of this investigation will still apply, to a lesser extent, 
to other actuators. The applicability of artificial intelligence technology for actuator fault 
diagnosis and failure management is assessed in Section 4. Section 5 presents 
recommendations for improving the fault diagnosis and failure management capability and 
the maintainability of dual tandem actuators. Finally, the report is summarized and the 
major conclusions presented in Section 6. 
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SECTION 2 

FAULT DIAGNOSIS AND FAILURE MANAGEMENT BACKGROUND 

Fault diagnosis is the process of determining if a failure has occurred and, if so, 
what component or subsystem has failed. This information is transmitted to the failure 
management system which determines how to respond appropriately to the failure. The 
three distinct yet interrelated tasks that make up fault diagnosis and failure management a~ 
frequently referred to as failure detection, fault isolation, and system recovery and 
reconfiguration. In this section, each of these tasks is discussed in a general manner, 
providing a basis for discussing fault diagnosis and failure management in the context of 
aircraft actuators for the remainder of the report. 

2.1 Failure Detection 

Failure detection is the operation of distinguishing between the normal and the 
abnormal (i.e. failed) behavior of a system. The detection process consists of a continuous 
cycle of monitoring (measurement), information processing, and comparison testing. In 
general, a failure is detected by monitoring the behavior of a component, subsystem, or 
system of interest, converting the raw data into a useful form (if necessary), and, finally, 
by comparing the resultant behavior with a reference model of expected behavior. The 
outcome of the comparison test is usually a binary decision, Le. "ok" or "failed." 

The performance of the failure detection system, therefore, is dependent on 
information about the system's behavior from the sensors, any knowledge necessary to 
process this information, and the comparison test. The first two required elements depend 
on the specific system and the failure detection and isolation approach or approaches 
chosen, and thus are difficult to discuss in a general manner. With regard to sensors, 
though, they must provide sufficient information such that any failure that will 
unacceptably degrade the system operation can be detected. Also note that while sensors 
are necessary for fault diagnosis and failure management, they also add another source of 
failures which must also be managed properly to avoid increasing the failure rate of the 
overall system. 
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However, general methods of comparison testing for failure detection do exist. A 
comparison test for failure detection consists of a reference model for comparison with the 
actual system's behavior and a decision rule to distinguish between failed and normal 
behavior. The reference model of expected behavior can either be a model of the normal 
behavior of the system or a model of the failed behavior of the system. In the first case, 
failures are detected by checking for discrepancies between observed behavior and a 
reference model of the normal behavior. In the second case, failures are detected by 
checking for consistencies between observed behavior and a reference model of failed 
behavior. A decision rule is required since the actual behavior will not exactly match the 
reference behavior due to uncertainty present in the form of sensor and environmental noise 
and modeling errors between the reference model and the actual system behavior. 

The reference models can take on many forms. When modeling the normal 
behavior, the reference model can be implemented in hardware or in software. In the case 
of a hardware reference model, one or more duplicates of a component, subsystem, or 
system of interest are used as a reference model (see Figure 2.1). In fact, each of the 
hardware redundant components or subsystems is a reference model for other 
component(s) or subsystem(s). A failure is detected by comparing the outputs of the 
redundant components or subsystems (where the decision logic may be implemented in 
either hardware or software). Note that this approach ignores simultaneous random 
failures. The detrimental effects of such failures are generally of second order. Common 
mode failure possibilities (i.e. single point failures that affect redundant elements) must be 
eliminated during the system design by employing fault-tolerant design techniques. Using 
redundant hardware components or subsystems to detect failures is referred to as direct 
redundancy. 

In the case of software implemented reference models, the most common models 
are analytic, quantitative functional relationships or system models. Using these models 
and alternative information from the system other than a direct measurement of the 
component or system output, a reference for the component or system is synthesized (see 
Figure 2.2). However, heuristic and qualitative models may also be used. The accuracy of 
the software reference models can vary from approximate to high fidelity, depending on the 
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Figure 2.1. Hardware reference model. 
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Figure 2.2. Software reference model. 
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ability to model the specific system and the performance requirements of the failure 
detection system. Using software reference models is often called analytic redundancy. 

The benefit of direct redundancy is that failure detection is straightforward, 
requiring only a simple comparison of the outputs. Also, assuming that the redundant 
components have similar performance, the resulting failure detection performance will be 
excellent. The advantage of analytic redundancy is that less redundant hardware is 
required, thus reducing the acquisition cost, reducing the mean time between system 
failures and improving system maintainability. (Computational resources required for 
analytic redundancy are assumed here to cost less, to be more reliable, and to be easier to 
maintain than the hardware eliminated by using analytic redundancy). 

In the case of modeling the failed behavior of a system, modeling all possible 
behaviors produced by failures is very difficult since components can normally fail in many 
ways. In addition, the failed behavior that results may also be a function of the time at 
which the failure occurs. As a result, the reference models describing the failed behavior 
tend to be very approximate. Two examples are range and trend checking. Rangr* 
checking declares a failure whenever an output exceeds a conservative estimate of the 
operating range for that variable. Trend checking declares a failure when there is an abrupt 
change that is not normally physically possible. (In a sense, these two approaches could 
also be considered analytic redundancy). An alternative approach is to check for 
characteristic failure modes of components or subsystems, usually using sensors directly 
on those components or subsystems. The disadvantage of this approach is that it is not 
capable of detecting failure modes that have not been defined a priori. Because of the 
difficulty in modeling the failed behavior of a system, achieving excellent detection 
performance is more difficult than when using a reference model of the normal behavior. 
Nevertheless, there are systems and situations where modeling the failed behavior produces 
acceptable detection performance. Note that direct redundancy is not possible in this case; 
the reference model must be implemented in software or analog logic. 

The choice of reference model depends on a number of factors which are system 
dependent. Some of these factors are the cost and reliability of hardware, ease of 

Comparison and 
Detection Logic 
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accurately modeling the system, computational resources, and the cost in engineering time 
to design the system. The most important factor is detection performance required. Errors 
in the reference model will result in incorrect decisions about the health of the system (see 
Figures 2.3 and 2.4). If the model of normal behavior inadequately describes all possible 
normal behaviors of the system, a failure will be disclosed when none exists. This is 
referred to as a false alarm. A failure is missed when the model of normal behavior models 
the behavior of the system with that failure. When the failed behavior is being modeled, a 
false alarm results when the abnormal model actually models the normal or unfailed 
behavior of the system. A missed failure occurs when the abnormal model inadequately 
models the behaviors resulting from some of the failures. 

If a false alarm causes the failure management system to remove the presumed 
faulty but actually unfailed component, the system performance and reliability is reduced 
unnecessarily. In addition, the maintenance required would increase in the case of aircraft 
actuators as the actuator would have to be examined for a failure before a new mission 
could be flown. If, however, a component failure is not recognized as a failure (Le., a 
missed failure), the system performance also degrades, perhaps resulting in the system 
being unable to function. 

Given a reference model of expected behavior to perform the comparison, a 
decision rule is required to distinguish between normal and failed behavior of the system 
when uncertainty is present. The effect of modeling errors was discussed above. External 
environmental uncertainty (e.g., change in the loading on the actuator due to turbulence or 
irregular airflow) can also be considered to be model uncertainty. The effect of sensor 
noise is to degrade the accuracy with which the actual system behavior can be measured. 
Even if the normal or failed behavior of the system was modeled perfectly, sensor noise 
would cause decision errors as the measurement of the system behavior differs from the 
actual system behavior. This is pictured graphically in Figure 2.5 as a gray area between 
the normal and failed system behaviors. 

The most common decision rule is a detection threshold on the difference between 
the actual and reference behaviors or some transformation of this difference. Other more 
sophisticated decision rules use additional information processing before comparing to a 
detection threshold. In any case, the effect of decision thresholds is to enlarge the modeled 
regions in Figure 2.6 to account for model, environmental, and measurement uncertainty. 
For example, if the comparison test is dependent on information from a very noisy sensor, 
the threshold could be increased to reduce false alarms. Similarly, if there is an 
environment or situation where the model does not accurately represent the system 
behavior, the thresholds can be increased to reduce the false alarms. The disadvantage of 
increasing the detection thresholds is that some types of failures and smaller magnitude 
failures may no longer be detected. In selecting thresholds, there exists a basic tradeoff 
between false alarm rate and the type and magnitude of failure that can be detected. 
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Figure 2.3. The effect of reference modeling e m r  on failure detection decisions when 
modeling the normal behavior. 
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Figure 2.4. The effect of reference modeling error on failure detection decisions when 
modeling the abnormal behavior. 
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Figure 2.5. The effect of sensor noise in observing the behavior 
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Figure 2.6. An interpretation of the effect of detection 
thresholds (normal model only). 
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However, the thresholds do not have to be constant as suggested in Figure 2.6. One 
frequently used technique when thresholds must be increased because of modeling or 
environmental uncertainty is to use dynamic thresholds based on the state of the system or 
the environment, This technique allows better detection of failures when the uncertainty is 
small. Clearly, the selection of detection thresholds is a major concern in any diagnostic 
system design. 

2.2 Fault Isolation 

The process of determining the failed component or subsystem responsible for 
abnormal behavior, after a failure has been detected, is called fault isolation. The specific 
information about which component or subsystem has failed is provided to the failure 
management task so that the effect of the failure on the system may be contained or 
negated. Therefore, isolation is only needed to the level required by the failure 
management system. For example, if there is redundancy at a subsystem level, isolating to 
the component level in the subsystem would be unnecessary for failure management 
purposes. Isolating to the component level may possibly be useful for subsequent 
maintenance purposes if no significant increase in system resources (mainly sensors and 
computational capability) is necessary. 

To perform isolation, the sensors must provide sufficient information such that 
failures of the individual components and subsystems can be differentiated. Note that more 
information is usually required than in the case of detection. This requirement for sensor 
information includes that required to differentiate failures of the sensors that provide the 
information for fault diagnosis from the components themselves. For example, adding a 
sensor to a component for fault diagnosis, without any additional information available 
about the operation of the component or sensor, does not provide sufficient information to 
isolate the failure to the component or sensor; the failure can only be isolated to the 
component-sensor subsystem. The disadvantage of not being able to differentiate between 
the sensor and the component is that the reliability of the component-sensor subsystem is 
less than the component alone. 

Isolation also requires knowledge of how the components or subsystems are 
interconnected and influence each other and, in turn, affect the system behavior. Other 
related knowledge such as the physical locations of the components and subsystems may 
also be useful. This knowledge about the functional and physical organization (Reference 
4) is needed to transform the behavioral information from the sensors into information 
about possible failed components and subsystems in the overall system. It may be used 
either explicitly in the transformation process or be implicit in the design of the isolation 
system. Finally, with uncertainty present (as discussed in connection with detection), 
some decision logic is required to differentiate between the possible choices of components 
and subsystems. 

. 
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In general, there are three possible outcomes of the decision logic: (1) correct 
isolation of the failed component or subsystem, (2) incorrect isolation, and, (3) no 
decision, which indicates that the failure cannot be isolated. Correct isolation is clearly the 
desired response. Incorrect isolation is a serious error since it has the effects of both a false 
alarm (a good component or subsystem will be eliminated from use) and a missed detection 
(the actual failure will not be countered) occurring simultaneously. No decision is likely 
for at least a short time following failure detection while the failure is being isolated. 
However, never isolating the failure is like a missed detection of a failure unless the failure 
management is able respond, in at least a limited sense, without explicit isolation. 

The various approaches to fault isolation can be loosely grouped into three 
categories: local isolation, arbitration, and generate and test. The characteristics of the 
approaches in each of these categories are now discussed 

2.2.1 Local Isolation 

In this category, a failure of a component or subsystem is isolated at the same time a 
failure is detected. The basic approach is to disaggregate (Le. break up) the system or part 
of the system into the components and subsystems at the desired level of isolation. Then, 
failure detection is performed on each individual component and subsystem as described in 
the detection section. The failure is isolated when a failure is detected. The important 
assumption is that failures are detected before their effects propagate and cause alarms in 
other detection tests. If this assumption is not true, reasoning is then required to determine 
which component or subsystem really failed. As more sophisticated reasoning is required, 
this approach may more naturally be categorized under generate and test algorithms. 
References 5-7 have formalized this approach to failure detection and isolation. 

Local isolation relies on sensors directly monitoring the particular component or 
subsystem of interest. (Isolating a failure without direct measurement, i.e. indireci 
isolation, requires other more powerful techniques discussed in the generate and test 
subsection.) In addition, sensors on the inputs to a component or subsystem may also be 
necessary. Any sensor information which is needed for these approaches must be validated 
(using other detection and isolation approaches) or the sensor or sensors become basically 
grouped with the component or subsystem for the purpose of isolation. In this instance, a 
sensor failure may be interpreted as a component or subsystem failure. One exception to 
these comments is detecting sensor failures based solely on their output, e.g., out of range 
conditions or other common failure modes. 

2.2.2 Arbitration 

The arbitration approach to isolation, as with failure detection, involves the use of 
comparison. However, the comparison of only two information sources, which is 
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sufficient for failure detection, is inadequate if either source of information is subject to 
failure. Arbitration uses more than two sources of information to isolate the failure via 
some form of majority logic. 

The comparisons used in arbitration can either be direct comparisons of information 
on the same physical or computation parameter or can be indirect comparisons of 
information on a number of physical parameters that are functionally related. The direct 
comparison most frequently used is direct redundancy (Le., information from similar 
redundant components or subsystems) since each of the redundant components or 
subsystems is subject to failure. The majority logic in this case could be simply threshold 
tests applied by pairing the components to ascertain which, if any, are too far away from 
the majority. 

Direct comparison can also use redundant information representing the same 
physical parameter, but emanating from dissimilar sources. The comparisons may be done 
directly on the measurements, or the data may be weighted towards what is considered to 
be a more reliable or less noisy source. In some cases, the data from some of the sources 
may not be a direct measurement of the parameter in question, but rather a synthesis of that 
parameter based upon other measurements in the system and a model of the system or the 
physics of the problem (i.e., a form of analytic redundancy). 

Note that arbitration may not be necessary when the comparison testing is done 
using analytic redundancy, as analytic redundancy is generally designed to be sufficiently 
reliable and can be assumed to be correct. However, both direct and analytic redundancy 
are sometimes used together in isolating failures. An example is the F-8 program where 
analytic redundancy provided the third source of independent information. 

Indirect comparison uses analytic techniques (Le., another form of analytic 
redundancy) to compare redundant information representing different, but physically 
related quantities of the same type that emanate from independent sources. These 
relationships can be the result of either the physics of the problem or an artificial 
relationship created using closed loop control techniques. Position and rate measurements 
fall into the former class. An example of the latter case is force balancing in a scheme 
where more than three hydraulic actuators are used to support a load at independent points. 
Because of the functional relationships that exist, more information is available than there 
are degrees of freedom. This redundant information may be used for isolation. 

Arbitration schemes are most efficient when used with sensors, as the outputs are 
simply compared and isolated in an appropriate manner. When isolating other components 
or subsystems using arbitration, the sensed information of that isJ used to isolate the failure 
must be separately validated. For example, if individual sensors are being used to compare 
three redundant components, at least two redundant sensors would be required on each 
component. With only one sensor on each component, a sensor failure cannot be 
differentiated from a component failure. Two sensors are sufficient to differentiate between 
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a sensor and component failure. A sensor failure might be isolated with only two sensors 
by assuming the component it is measuring did not fail at the same time and if one of the 
sensors agrees with sensors on the other components. 

2.2.3 Generate and Test 

Most other approaches to isolation can be considered to be some form of the 
generate and test paradigm. This paradigm, in the context of fault isolation, can be 
described procedurally as follows: 

(1) Generate a new fault candidate (generally a component or subsystem). 

(2) Attempt to verify the hypothesis by testing its ability to explain the observed 
faulty behavior of the system. A model is required to predict (via simulation) 
the system behavior resulting from the assumed faulty component. 

If the current hypothesis is valid, then go to step (4); otherwise loop back to 
step (1). 

Present the current hypothesis as the isolated fault. 

(3) 

(4) 

The algorithm terminates when the failed behavior predicted by simulation matches (to a 
reasonable degree) the observed faulty behavior of the system. The hypothesis used for 
simulation is then declared to be the faulty component responsible for the observed 
behavior of the system. An alternative procedure is to generate all candidate hypotheses 
before testing any of them. In this case, the hypothesis that most closely matches the 
observed behavior is chosen. 

The generate and test approach to fault isolation can be interpreted as shown in 
Figure 2.7. The candidate generation process involves a transformation from a behavioral 
description of the failure (the symptoms) to a structural one (the faulty components). Tht 
verification (Le., test) process (fault simulation) is exactly the inverse of the original 
transformation. Note that each of these procedures relies on knowledge of the system 
model (Le., its structure, organization, and behavior). 

Conceptually, this procedure employs two basic modules referred to as the generator and 
the rester (Reference 8). The solution algorithms differ with respect to these modules. The 
overall efficiency of the algorithm (as measured by the number of iterations or time required 
to arrive at a solution) depends critically upon the efficiency of the generator and the tester. 
The power of a specific generate and test procedure to provide correct answers results from 
its ability to generate accurate hypotheses and to discriminate effectively among competing 
hypotheses. 
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Figure 2.7. Generate and test approach to fault isolation. 

2.2.3.1 Candidate Generan 'on 

To guarantee that a generator will produce the correct solution to the fault isolation 
problem, the generator must be complete, Le., able to produce all possible hypotheses. A 
necessary condition for completeness requires that the set of all possible solutions be 
enumerable and finite. If there are possible solutions which cannot be produced by the 
generator or if there are an infinite number of possibilities, then the generator is said to be 
incomplete. An incomplete generator may or may not produce a correct hypothesis. 

The effectiveness and efficiency of the candidate generation process may be 
improved through guidance. The simplest form of guidance restricts candidate generation 
so that the same hypothesis is never proposed more than once. Generators with this 
property are said to be nonredundant. In some situations, no further guidance is possible 
and the optimum generator is nonredundant, but otherwise arbitrary in its selection of 
candidates. Under these conditions, the algorithm is referred to as exhaustive search. 

For a problem having a single solution among a complete set of N possible solution 
candidates, exhaustive search will arrive at the correct solution in N/2 iterations, on 
average. For many important problems however, the quantity N is characterized by 

t 
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exponential growth relative to linear changes in the problem size. Although exhaustive 
search is simple and straightforward, it is a "blind" method of candidate generation and, as 
such, is not generally amenable to complex problems. 

Useful information normally exists which can be exploited to substantially reduce 
the number of iterations required (on average) to arrive at a solution. Knowledge about the 
problem domain in combination with information returned from the tester (the error 
estimate or error signal) may be used for this purpose. Generally speaking, the more that is 
known a priori about the problem domain and the more sophisticated the runtime 
verification process and associated error signal are, the better the candidate generator will 
be. In effect, a priori and runtime information serve to limit the number of candidate 
hypotheses that must be considered. 

Candidate hypotheses are removed from consideration in two different ways. 
Candidates may be eliminated from consideration permanently, based on the evidence at 
hand. Alternatively, candidates may be temporarily removed from consideration as a 
consequence of prioritizing the remaining possibilities. Prioritization schemes organize 
remaining candidates so that those hypotheses which are most likely to succeed are tested 
first. Prioritization schemes may be heuristic in nature, or optimal with respect to the 
current state of the solution process. 

While candidate generation can be done in real-time, in most present diagnostic 
systems, a set of possible fault candidates are enumerated a priori, eliminating the need for 
real-time candidate generation. This is normally done because the total number of 
reasonable fault candidates which must be considered is small in number. This is true for 
even large systems where the fault diagnosis capability is broken down by subsystems. 
There are, however, a number of recent systems which do generate the candidate 
hypotheses in real-time. These systems are a result of attempting to incorporate some 
artificial intelligence technology into the diagnostic process and therefore will be discuswl 
further in Section 4. 

2.2.3.2 Hvpothesis Testing 

The function of the tester is to determine whether the current hypothesis is valid. 
Conceptually, testing often involves two distinct subtasks: (1) simulation and (2) 
comparison testing. Simulation is the process of examining the logical consequences of a 
particular hypothesis with respect to a given knowledge base or model. Typically, 
simulation is carried out by numerical modeling. The simulation result is subsequently 
compared with, for fault isolation, to the actual behavior of the system. 

One significant complicating factor in simulating the effect of the fault hypothesis 
on the system behavior is that the form, size, and time of the failure all have an important 
effect on system behavior. There are some failm detection and isolation algorithms which 
can isolate failures without knowing specifically the behavior of the failed component or 
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subsystem. However, most hypothesis testing algorithms must estimate this information, 
search over some space of possible failure behavior, or some combination of these two. If 
search is used to identify the failed behavior, the computational effort required may be 
greatly increased. In this case, fault identification is basically required, which is much 
more difficult. 

It is frequently the case that no hypothesis satisfies the requirements of the 
comparison test perfectly. This may be the result of imperfections in the simulation process 
(modeling errors), noise in the environment, or of uncertainty in decision making. The 
generate and test algorithm may terminate when the best hypothesis (i.e., the hypothesis 
having the smallest associated error) is found, or when the error falls below a prescribed 
threshold value. The quality of the decision process impacts the overall performance 
(especially the accuracy) of the solver to a significant degree. 

2.2.3.3 Benefits and Disadvantages 

The fundamental advantage of generate and test approaches is that they can be 
powerful, using a model of the system to isolate faults for which there is limited or 
nonexistent direct information. The result is fewer sensors and components required for 
fault diagnosis. However, the generate and test procedure suffers from the primary 
problems associated with all indirect problem solving techniques: uncertain convergence 
characteristics, variable solution time, and some degree of arbitrariness. Present generate 
and test algorithms, though, mitigate this somewhat by limiting the fault candidates to an a 
priori enumerated set. Still, some algorithms need to estimate the failed behavior of the 
component or subsystem or search over some space of possible failed behaviors (in 
addition to searching over possible component failures) since faults usually have many 
possible failed behaviors. In any case, the computational requirements for these 
approaches are usually significantly greater than other isolation approaches. 

2.3 Failure Management 
I 

Failure management is the process of evaluating the effect of a previously detected 
and isolated failure and then responding to the failure to recover some level of system 
performance. The level of system performance possible is a function of the system 
capability following a failure (which is in turn a function of the system redundancy). Very 
generally, failure management can be consided to consist of the following steps: 

(1) Given a description of the system's abnormal behavior and altered structure, 
determine the system's current level of capability. 

(2) Compare the current system capability with the prescribed system 
performance objectives and alter the performance objectives as close as 
possible to the original objectives but within the current system capability. 
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(3) Determine and execute the sequence of response action which will minimize 
the discrepancy between the present system performance and the modified 
performance objectives. 

At the present time, with few, if any, exceptions, failure management systems take the fault 
isolation information and simply execute a predetermined sequence of response actions. 
The first two steps and most of step 3 are performed in advance when the failure 
management system was developed and are implicit in the transformation from isolation 
information to response actions. 

The response to a failure can be divided into two tasks: system reconfiguration and 
recovery. Reconfiguration is the process of negating the failed element, so that it no longer 
has any influence on the system behavior, reassigning the function of the failed element to 
another redundant element or elements, and restoring the performance of the system. The 
isolation and reassignment may be logical, in the sense that there are multiple sources for a 
parameter and erroneous data emanating from the failed element is simply ignored; it may 
be electrical, either by removing power from the failed element such that its outputs go to a 
null state or by electrically switching in a replacement element; or it may be physical, in the 
sense that the structure of elements are physically changed by a monfiguration mechanism. 
While these methods of reconfiguration are the most common, changing the software 
controlling the system is often necessary to take advantage of other functional redundancy 
or capabilities not normally used or to improve or restore the performance of the system. 
One example is altering the control system to account for the changed system. 

Recovery includes other actions taken to c m t  or minimize the effect of a failure in 
lieu of or in addition to those taken to reconfigure the system. These actions are sometimes 
required to 

shut down the system operation, when sufficient capability to perform is no longer 
available, in such a manner that the system is not lost and the damage to the systen. 
is minimized. 
oppose the effect of the failure while reconfiguration is occurring. 

bring the state of the system back to a condition where the reconfigured system can 
operate satisfactorily. 

Recovery is not needed for aircraft actuators as they are required to be able to reconfigure 
quickly so that a failure only causes a small transient. Therefore, the subsequent 
discussion on failure management will concentrate on reconfiguration. 
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SECTION 3 

FAULT DIAGNOSIS AND FAILURE MANAGEMENT 
IN DUALTANDEM HYDRAULIC ACTUATION SYSTEMS 

3.1 Introduction 

Three levels of real-time fault diagnosis and failure management (FDFM) capability 
are possible on aircraft control surface actuators. The most basic capability (if any exists at 
all) is simply to detect that the actuator has failed so that the pilot may be notified. The 
benefit of notifying the pilot is that continued operation with a degraded vehicle may be 
undesirable or prohibited. The next level of capability is to diagnosis certain component or 
subsystem failures so that their effect can be neutralized by activating appropriate 
reconfiguration devices. The objective of neutralizing the effect of a failure is to allow the 
actuator and the aircraft to operate more efficiently and effectively. The most sophisticated 
fault diagnosis and failure management capability is required for actuators which are fault 
tolerant, i.e., capable of automatically adapting, in a well-defined manner, to failures of 
their own elements so as to continuously maintain a specified level of system performance. 
In this case, the FDFM performance requirements are demanding because even small 
failure transients can have a significant effect on the aircraft. For example, on high-speed, 
high-performance aircraft, transients which result in as little as 3 degrees of surface 
movement may result in mission failure, if not aircraft loss (Reference 1). 

Hydraulic actuators with fault tolerance capability are often differentiated based on 
the level of redundancy associated with the power ram. The power ram is a mechanical 
device which converts hydraulic pressure into a force that positions the control surface via a 
connecting rod attached to the surface. The position of the surface is controlled by 
directing the hydraulic fluid into ports or openings on either side of the piston or pistons of 
the power ram (see Figure 3.1). A simplex actuator relies on only one hydraulic system 
and piston in the power ram. While other parts of the actuator which control the hydraulic 
fluid driving the power ram may be fault tolerant, a failure of either the hydraulic system or 
the power ram would disable the actuator. Therefore, for actuators on flight critical control 
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Figure 3.1. Power ram. 

surfaces, power rams with two pistons in tandem where each piston is supplied with a 
separate hydraulic system are used (see Figure 3.2). These actuators are referred to as dual 
tandem actuators. 

Dual tandem actuators have the greater fault tolerance capability and, therefore, 
require the more sophisticated active fault diagnosis and failure management capability. 
Therefore, this report focusses on the fault diagnosis and failure management of this class 
of actuators. Nevertheless, the results of this study should be applicable to other 
configurations to some extent. 

Section 3.2 briefly reviews current operational and experimental high performance 
dual tandem actuators. The following subsection examines the fault diagnosis and failure 
management capability of these dual tandem aircraft actuators. This section provides a 
basis for evaluating alternative approaches to actuator FDFM. 

Figure 3.2. Dual tandem power ram. 
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3.2 Dual Tandem Actuator Review 

The dual tandem actuators examined far this study can be divided into three general 
classes. The first class consists of actuators presently used in military aircraft. The other 
two classes are simpler experimental and prototype designs. The actuators in these classes 
differ in the manner in which the hydraulic flow to the power ram is controlled. Each of 
the types of actuators are briefly described and compared. The additional components 
required for fault diagnosis and system reconfiguration are discussed in the subsection on 
FDFM capability. 

3.2.1 ODe rational Dual Tandem Actuators 

A configuration which is typical for dual tandem actuators is shown in Figure 3.3. 
While current dual-tandem actuators may differ from this configuration in some manner, it 
is sufficient to give a general understanding of these actuators. These actuators use three 
stages to convert and amplify an electrical or mechanical input into controlled hydraulic 
flow to the power ram. The fmt stage normally consists of three to four jet pipe or flapper 
nozzle servovalves which convert the input to a differential pressure to drive the second 
stage servovalve spool. The fmt two stages are often combined into a single unit called a 
two-stage electrohydraulic servovalve (EHSV). With these devices, the spool position is 
controlled by feedback (normally mechanical) of the spool position to the first stage. The 
schematic and the operation of a two-stage EHSV is shown in Figure 3.4. The second 
stage then meters hydraulic flow to modulating pistons or servo rams which in turn 
position the dual main control valve (MCV). The second stage may alternatively position 
the MCV mechanically. The MCV controls the hydraulic flow to the power ram. There is 
closed-loop control of the power ram position which may be implemented mechanically, in 
analog circuitry, or using digital processing. In the case of mechanical control, the linear 
variable differential transformers (LVDTs) are replaced by linkages unless required fol 
other purposes. 

3.2.2 Exmrimental and Prototye Desims 

One experimental class of actuators consists of those systems which have 
eliminated the MCV, using 2 to 4 two-stage EHSVs to control the hydraulic flow to the 
power ram directly (see Figure 3.5). 

The other class considered here is the direct drive actuator which uses electrical 
motors to control the position of the MCV directly (see Figure 3.6). These direct drive 
actuators simplify the actuator design and eliminate the conventional two-stage amplifier 
stage. These designs are suitable for high pressure application since the actuator 
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The principal of operation is as follows: 

FIRST 
STAG E 

-3- 
SECOND 
STAGE 

Hydraulic fluid flows through the jet pipe to the first stage hydraulic amplifier. 

The first stage amplifier consists of the transmitter orifice on the end of the jet pipe and the 
two receiver orifices below the transmitter orifices, slightly off-set to the right and left. 

With the jet pipe in the normal position and no electrical signals applied, the pressure and flow 
in both receiver orifices is equal and the second stage spool valve remains stationary. 

By deflecting the jet pipe to the right or left, the pressure and flow relationship between the 
right and left receiver orifices is changed, which results in a second stage valve spool 
displacement and therefore a hydraulic flow command change to the actuator. 

The jet pipe position is controlled by the force of the electromagnetic fields generated by the 
valve drive currents in valve coils #1 and #2, the permanent magnets on the jet pipe 
deflection bar and the mechanical feedback spring. 

Figure 3.4. Principle of operation of electrohydraulic servovalve 
(taken from Reference 9). 

23 



4 
x 

24 



e Servoamplifiers 

Dual Main Control Valve 

Power Ram 

Figure 3.6. A typical direct drive dual tandem actuator. 

interleakage is significantly reduced with the elimination of the two-stage EHSVs. The 
motivation for using higher hydraulic pressure is to reduce the size of the actuator which is 
attractive given the thin wings of modern military aircraft. 

3.2.3 ComDarison of the Three Classes 

The operational class of dual tandem actuators use more stages for amplification 
This allows smaller f i t  stage servovalves to be used which reduces the hydraulic power 
loss associated with these devices. The benefit of an MCV is that it isolates the effect of 
load from the servovalves and produces better dynamic response (Le., more stiffness). 
The use of an MCV also results in better failure performance as the actuator does not lose 
force output capability with loss of an EHSV, although it may still lose some bandwidth. 

The removal of the MCV in the first class of experimental designs simplifies the 
actuator and eliminates another source of failures. However, this class requires more 
powerful two-stage servovalves which results in a higher constant power loss and higher 
failure transients. In addition, these actuators have lower chip shearing capability and 
slower dynamic response. 

Direct drive electrical motors used on the direct drive experimental actuators are 
necessary with higher hydraulic pressure application as the constant hydraulic power loss 
with standard EHSVs would be too high. Electric motors have become significantly more 
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powerful since the development of motors using rare-earth metal, making this actuator 
design feasible. Internal leakage around the piston becomes a more significant problem, 
though, with the higher hydraulic pressure, and the dynamic performance is slower than 
the other two classes. 

3.3 Fault Diagnosis and Failure Manage ment CaDab ilitv 

The fault diagnosis and failure management capability of these three classes of 
actuators was determined by examining the FDFM system on six representative actuators: 

F- 16 integrated servoactuator 

F-18 stabilator actuator 

V-22 swashplate actuator 

Digital integrated servoactuator controller (DISAC) actuator developed 
by the Boeing Military Airplane Company and Moog Inc. 

Bell 4-valve (Bell-4V) actuator 
Dynamic Controls direct drive actuator developed for the Air Force 
Flight Dynamics Laboratory 

The F-16, the F-18, and the V-22 actuators are presently in use on recently developed 
military aircraft. Presumably, they represent the best of actuators presently in use. The 
Bell-4V and the DISAC actuators are of the experimental type which have eliminated the 
MCV. The Bell-4V actuator was developed for a flight test program while the DISAC 
actuator is a prototype designed to test microprocessor-based control, fault diagnosis, and 
failure management. The Dynamic Controls direct drive actuator is a proof-of-concept 
prototype. 

The FDFM capability of these actuators is frst  described in general. Then the 
specific FDFM systems on the actuators is presented followed by a discussion of their 
capability. Finally, some improvements for actuator FDFM systems are suggested. 

3.3.1 Overview of Dual Tandem FDFM Capabilitv 

In general, FDFM for these actuators is based on the local isolation approach 
described in Section 2.2.1. The actuator is conceptually disaggregated (i.e. broken up) into 
component or subsystem elements for which there is a failure response. Then, failure 
detection is performed on each individual element. When a failure detection test is 
exceeded, a failure is isolated immediately to the monitored element. The important 
assumption is that failures are detected before the effect of the failure propagates and causes 
alarms in other detection tests. Alternatively, any downstream detection tests must allow 
sufficient time for upstream component failures to be detected by their corresponding test. 
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If the propagation of the effect of the failure is not handled properly, the failure may be 
isolated to an incorrect component. Careful consideration of the effects of failure 
propagation is important because, given this approach, information is not shared among 
the detection tests. For each failure detection, there is a straightforward failure management 
response which at best may contain some logic to account for other previous failures that 
been detected and removed from operation. 

The three approaches to failure detection used are self-test, direct redundancy, and 
analytic redundancy. Briefly reviewing Section 2.1, self-test relies upon information that 
can be obtained directly from or within an element itself to detect common or characteristic 
failure modes. Direct redundancy compares the outputs of like components to detect and 
isolate failures where analytic redundancy, as used in the case of actuators, compares the 
output of a component to an analytic model. 

There are passive and active failure responses used on these actuators. In the 
passive case, the actuator is designed to handle the failure without explicit failure detection 
and failure response by relying upon the redundancy designed into the system. Active 
responses reconfigure the system to neutralize the effect of a failed component or 
subsystem and, in some cases, to recover the original performance. 

3.3.2 Specific Description of FDFM Svstems 

The F-16 actuator (References 10 and ll), shown in Figure 3.7, uses three two- 
stage electrohydraulic servovalves to drive an MCV. In the normal mode of operation, 
only two of the servovalves are used to drive the MCV with the third servovalve in an 
active standby mode. The input to the servovalves is a function of the electrical command 
and the mechanical feedback of the power ram and MCV spool positions (MCV spool 
position feedback provides power ram rate feedback). There are current monitors on the 
outputs of servoamplifiers which are directly compared to detect amplifier and servovalve 
coil failures. If a failure is detected in either a’servoamplifier or a coil, that command circuit 
is replaced by a standby amplifier driving the secondary coil of the servovalve in the failed 
circuit (if the standby amplifier is not the failed component). This part of the FDFM logic 
is implemented in an analog computer with a switch providing the reconfiguration 
capability. Servovalve failures are detected by hydraulic logic comparing the output 
differential pressures of the first stages of the servovalves. The hydraulic voting spool 
causes the MCV modulating piston control to switch to the standby servovalve if one of the 
two primary servovalves has failed. If the standby servovalve fails, the two primary 
servovalves are locked on. The final failure detection test used on the actuator is a 
comparison of the actual actuator performance using a power ram position sensor and a 
model of the actuator in the computer. The response to a failure detected with this test is to 
activate two solenoid valves that allow the feedback centering spring to command the 
actuator to zero position. 
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The F-18 stabilator actuator (Reference 12) has four single stage EHSVs which are 
paired to allow direct failure detection by comparing their output pressures using quad 
differential pressure sensors on each pair of servovalves (see Figure 3.8). EHSV failures 
detected in this manner are contained by a solenoid valve which shuts off the hydraulic 
supply to that pair of one-stage servovalves. Each one-stage EHSV has four coils with a 
coil on one servovalve connected in series with a coil on the other servovalves. Each of the 
four series of coils are driven by a separate amplifier. One of the four digital flight control 
computers (FCC) is interfaced to one and only one amplifier, supplying the current 
command to the amplifier-coil combination. With this flux-summing arrangement, the 
inputs from the four amplifiers are effectively added. The current from each amplifier is 
compared to a digital model of the amplifier to detect amplifier or coil failures. If a failure 
is detected, that electrical channel is disabled, The actuator is able to meet the performance 
specifications with two coil failures so no failure management is necessary. More than two 
coil failures results in the hydraulic flow to both pairs of EHSV being shut off, allowing 
the MCV to be controlled mechanically. Each pair of EHSVs drives one piston of a dual 
tandem modulating piston design. The dual tandem modulating pistons is mechanically 
linked to the MCV to control its position. (This design is motivated by the desire to 
incorporate mechanical reversion capability) There are quad LVDTs on both the servo ram 
and the power ram, which are used for control. Each LVDT is connected to one of the four 
FCCs. Each FCC in turn, drives one of the servo amplifiers. Failures of these sensors or 
the command from the FCC are detected both by the servoamplifier current failure detection 
or by comparing the position of the servo ram with a model. Sensor detection by direct 
comparison is not possible because the quadruplex digital FCC system does not allow any 
cross channel communication. The loss of hydraulic power is negated by a 
bypass/damping valve which equalizes the pressure on either side of the power ram 
pistons, allowing the control surface to float. 

The V-22 actuator (Reference 13) controls the MCV with two unbalancci 
modulating pistons (see Figure 3.9). Two two-stage EHSVs drive one modulating (mod) 
piston with the third two-stage EHSV driving the second mod piston which has half the 
area of the first mod piston. The servovalves are commanded separately by the three 
FCCs. The current driving the EHSVs is measured and compared to a digital model in the 
FCCs for servoamplifier and servovalve coil failure detection. EHSV failures are detected 
using the position sensor on the second-stage spool of each servovalve for EHSV failure 
detection. Failures of LVDTs including the triplex LVDTs on the MCV and the power ram 
are detected using a self test approach since there is no cross channel comparison used in 
this case either. The response to a failure of a servoamplifier, a servovalve coil, a 
servovalve, or an LVDT is the same: activate the appropriate shutoff valve or bypass valve 
to disable the hydraulic flow to the corresponding servovalve. 
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Figure 3.8. F-18 stabilator actuator (taken from Reference 12). 
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The Bell-4V actuator (References 14, 15 and 16), shown in Figures 3.10 and 3.1 1, 
uses four two-stage flapper valve EHSVs to meter the hydraulic flow directly to the dual 
tandem power ram. An open EHSV coil or drive wire failures are detected by comparing 
the EHSV current to a simple analog model. If a failure is detected, the particular EHSV is 
disengaged using a solenoid valve. Other EHSV failures are detected by directly 
comparing the position of the second stage spool of the four servovalves. Because the 
Bell-4V is able to accept a hardover servovalve failure (the control system causes a bypass 
around the piston with the failed servovalve channel), the detection thresholds are set so 
that only large failures are detected. The advantage is reduced false alarms. If both 
channels driving a piston have failed, a bypass valve is activated for that piston. The 
FDFM system is implemented in analog logic. 

The DISAC prototype actuator (Reference 17) was developed to be controlled and 
managed by two microprocessors (see Figure 3.12). It differs from the Bell-4V actuator in 
that only two EHSVs are used. In the primary operating mode, each microprocessor 
controls one channel (i.e., EHSV and bypass valve). However, if a microprocessor failure 
is detected using some self test, that microprocessor relinquishes control of its channel and 
the other microprocessor controls both channels. To accomplish this design, both 
microprocessors have access to the same information on each channel through the use of 
duplicate sensors. One sensor interfaces to each microprocessor. In addition, both 
microprocessors are able to operate each EHSV and bypass valve using separate coils in 
each component. Logic exists to keep both microprocessors from attempting to control the 
same component simultaneously. Failure detection on this actuator consists of comparing 
the measured position of the second stage spools to fast and slow models of the EHSV to 
detect EHSV failures. In addition, LVDT failures are detected using self test. The failure 
management response could be either to neutralize the channel with the failed component or 
allow the other microprocessor to take over operation of the channel. The precise 
redundancy management logic is not detailed in Reference 15. One unique feature of this 
actuator is the use of position switches on the bypass valve to verify its operation, 
presumably during preflight testing. Bypass valves failing open is a latent failure as it 
cannot be observed during normal operation. Preflight testing at least verifies its operation 
occasionally. 

The Dynamic Controls direct drive actuator (Reference 18), shown in Figure 3.13, 
uses two servoamplifiers to provide current to each direct drive motor. Each amplifier 
drives one of two coils in each motor. Servoamplifier failures are handled by using a 
cross-strapping design that opposes the bad channel with the good channel. Failures in the 
command inputs and the LVDT on the power ram are detected by comparing the feedback 
error in two channels. The response is to disconnect the command from the motor with the 
detected failure. An LVDT failure is opposed using the cross-strapping design again. The 
FDFM requirements for direct drive actuators ~IC less than the other actuators because the 
motor fails in benign ways such that an active response to neutralize the failed is not 
required. 
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3.3.3 Actuator FDFM Examination 

The FDFM systems on these six actuators are examined with respect to their ability 
to diagnose and respond to various component failures, their performance, and their logic 
implementation. 

3.3.3.1 Commnent Failure Diamosis and Management 

The FDFM systems for the six actuators are summarized in Table 3.1. The FDFM 
systems are generally able to detect and reconfigure the actuators for servovalve, electrical 
and sensors failures. No reconfiguration capability in general exists to address failures of 
the MCV and the power ram. The most likely common mode failure for the MCV and the 
power ram is for them to jam; the upper stages driving the MCV or power ram are designed 
with properly specified chip shearing force capability, overpowering the jam in most cases. 
No reconfiguration capability exists for direct drive electrical motors either since their most 
common failure modes are shorts or opens in their coils. The actuator is still able to operate 
with these types of failures of the motors although the chip shearing capability and, 
perhaps, the dynamic response will be degraded because of the reduced force capability of 
the two motors. 

Also generally not addressed are failures of the FDFM system itself, including the 
implementation of the logic and the reconfiguration components. This is especially true for 
FDFM logic implemented hydraulically or in analog circuitry as there is no redundancy in 
these cases. If the hydraulic or analog logic fails, the result could either be to declare a 
failure of some other component (incorrect isolation) or to detect no failure at all (missed 
failure). The latter case allows the actuator to continue operation but creates the potential 
situation where another failure occurs and the FDFM system is unable to respond to it, 
perhaps causing the loss of the aircraft. In the first case, the operation of the actuator may 
be degraded or shut off because of the failure response or responses chosen by the failed 
FDFM logic. Unless unnecessary loss of the actuator is critical because of the mission 
situation, this case is preferable since at least some failure is detected. The digital 
implementations of the logic are more fault tolerant since the logic is distributed to more 
than one processor. 

Failures of reconfiguration components such as bypass and solenoid valves and 
switches are, in some cases, impossible to detect. This is the case because they are on-off 
devices. For example, if such a device which is normally off becomes stuck in that 
position, the failure cannot be detected since the failure does not adversely affect the 
operation of the system (i.e. a latent failure). When and if the component is commanded to 
turn on or if the component fails to a different condition than it is being commanded, the 
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failure can be detected. Since only one of the actuators studied provided backup or 
redundant components for these devices (a backup coil on the DISAC actuator bypass 
valves), they apparently are sufficiently reliable that FDFM is not required for these 
components. Nevertheless, as suggested by the redundancy management on the DISAC 
actuator, preflight testing of these devices would reduce the likelihood of flying with a 
failed reconfiguration device of this type. 

Some failures are handled using inherent capability within some actuators, requiring 
no explicit FDFM system. For example, the Bell 4-valve and the F-18 actuators can 
accommodate a hardover servovalve failure with only closed-loop control. With these 
actuators, the control system will cause the other three servovalves to move to oppose the 
failed servovalve. The result will be a force-fight situation with degraded, but acceptable, 
performance. Similarly, the cross-strapping amplifier design on the Dynamic Controls 
direct drive actuator simply offsets the effect of one amplifier failure with the opposite 
current in the other amplifier. Force fighting is characteristic of many passive failure 
responses. The advantage of this approach is no that FDFM logic or reconfiguration 
devices are required. The disadvantage is that excess capability greater than normally 
required is necessary, needing and using much more power than necessary. In addition, 
force fighting will cause performance degradation and mechanical fatigue, increasing the 
wear and tear on the system and the likelihood of subsequent failures. In addition, unless 
the detection thresholds account for the effect of force fighting, false alarms will occur. 

3.3.3.2 Imdemen tation 

The FDFM logic is implemented in three basic ways: hydromechanically (the F-16 
actuator), in analog circuitry (the F-16, the Bell 4V, and the Dynamic Controls direct drive 
actuators), and in digital software (the F-18, the V-22, and the DISAC actuators). In the 
latter case, the digital logic can reside either in a central FCC or in a local microprocessui 
There is a trend from hydromechanical and analog logic to digital logic. The disadvantages 
of hydromechanical logic are the additional cost, power, size, weight, and hydraulic 
complexity required. One implication is decreased maintainability. In addition, this logic 
can only be used for direct redundancy failure detection, must be simple, and cannot be 
modified without a major effort (i.e., little flexibility). Analog logic overcomes most of 
these disadvantages. However, the FDFM capability possible is basically limited to self 
test and direct redundancy approaches, although a limited analytic redundancy capability is 
possible. Digital implementation of the FDFM system offers the potential for the best 
FDFM capability since all of the detection approaches - self test, direct redundancy, and 
analytic redundancy - can be easily and precisely implemented. In addition, the potential 
for fine tuning of the FDFM logic exists. The benefits of using a local microprocessor 
rather than relying on the central FCC are alleviating the system management burden of the 
FCC, less cabling to the FCC, distributed processing allowing increased computational 
capability for FDFM and other tasks, and better digital control (Reference 19). However, 
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the impact of the local environment (e.g., heat, vibration, etc.) on the microprocessor is a 
problem that is still being investigated (Reference 19). 

While digital implementation of the FDFM system offers the greatest capability, all 
of the digital FDFM designs above had limitations imposed on them by the design of the 
fault tolerant computer system. In order to interface with the quad FCC system on the 
F-18, all the electrical components and sensors were quad redundant, creating four 
electrical channels. Each of the four redundant components or sensors interfaces with only 
one FCC. No cross talking between systems was allowed, eliminating the most natural 
approach of failure detection: direct comparison of the redundant components. The failure 
response is to eliminate the entire electrical channel if any one component or sensor in the 
channel fails. The V-22 system is similar to the F-18 except that a triplex FCC is used. 
The DISAC actuator also has problems with using the redundancy available with their 
"brickwall" design (Le., no communication between the two local microprocessors). The 
benefit is simpler FDFM computer architecture at the expense of more components and an 
increased failure rate. However, reliable communication between computer channels may 
not be possible without significantly increased complexity and decreased reliability. 

3.3.3.3 FDFM Perfoxmance 

The fault diagnosis performance for these FDFM systems is determined by the 
performance of each individual detection test. The resulting performance is partially 
determined by the type of detection test and the thresholds used. Self test, used to detect 
microprocessor failures on the DISAC actuator and some LVDT failures, is only able to 
detect certain specific failures. Normally, the direct and analytic redundancy approaches 
result in better detection performance, since modeling the normal behavior of a component 
or subsystem is generally easier, more accurate, and more comprehensive than modeling 
the failed behavior. In practice, the thresholds set using direct and analytic redundancy are 
large for actuator applications. Reference 18 states that thresholds for fly-by-wire actuators 
are often set to 30 to 50% of the maximum level possible with a hardover failure. As a 
result, only large failures are being detected with the other failures being compensated for 
by the control system. Apparently, smaller thresholds are not possible without an 
excessive false alarm rate. This may be true because of significant differences in the 
dynamics of two components in the case of direct redundancy or because of significant 
modeling errors in the case of analytic redundancy. Still, the fault diagnosis capability is 
apparently adequate to detect component failures that would potentially cause loss of the 
aircraft. No comments in the literature were noted about missing failures. Rather, the 
problem appears to be the false alarm rate (References 2 and 3). 
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3.3.4 Possible FDFM Sv stem ImDrovementS 

This survey of the literature and these actuator FDFM systems suggests three areas 

Reduced false alarm rate, References 2 and 3 suggest that the detection of 
failures that cannot be duplicated by ground support personnel is one of the 
leading causes of maintenance actions. The most likely cause for not being able 
to duplicate the failure is that a false alarm occurred. Much less likely, but also 
possible, are transient failure situations that are not repeatable on the ground. 
Improving the rather simple fault diagnosis systems on actuators should 
significantly reduce the false alarm rate, thereby reducing unnecessary 
maintenance actions necessary. 

More efficient FDFM design. There are several FDFM design practices that 
tend to increase the need for maintenance and decrease the actuator reliability. 
The first is simply to add one sensor to a component for improved fault 
diagnosis. An example of this is the V-22 actuator LVDT on the servovalve 
spool. In this case, using only direct or analytic redundancy for failure 
detection, a sensor failure is indistinguishable from component failures in the 
actuation system . Even if the sensor failure can be distinguished from the 
failure of the associated component, detecting the subsequent failure of the 
component after the sensor has failed would not be possible using local 
isolation. The result is that good actuator components may be disengaged 
whenever an associated sensor fails. Under these circumstances, adding a 
sensor to a component will actually reduce the reliability of the system. 
However, if other sensor information was used, detecting a component that is 
not directly measured may be possible, for example, using analytic redundam;- 
This approach would be possible if the effect of the failure on the overall system 
can be distinguished from other component failures. 

A second design practice is to include excess capacity to overcome failures by 
force fighting. While this passive FDFM approach may be the only possible 
approach or the most efficient approach for some failures, several actuators 
used this approach simply to reduce the need for active FDFM. In these cases, 
the result is increased weight and power requirements. In addition, the rate of 
component failures and the need for maintenance will be greater. 

The FDFM systems could also be more efficient if better means of interfacing 
with fault-tolerant computer systems were used. In existing systems, the loss 
of one electrical component disables an entire electrical or electrohydraulic 
channel. A better design would reduce the number of sensors required. These 

of improvement that might be possible: 
0 
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benefits may not be worth the additional computer architecture complexity, 
however. 

following a failure to improve the actuator performance. In addition to 
performance recovery, control system reconfiguration might be one approach to 
responding to failures of Sensors needed for inner loop compensation. Inner 
loop feedback improves the dynamic response of the actuator but it is not 
absolutely necessary. Whether the resulting performance would be adequate 
requires further investigation. 

Control SY stem reconfirmration, None of the actuators alter the control system 
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SECTION 4 

AN ASSESSMENT OF AI METHODOLOGIES 
FOR 

ACTUATOR FAULT DIAGNOSIS AND FAILURE MANAGEMENT 

4.1 Introduction 

Artificial Intelligence (AI) technology consists of broad classes of problem solving 
techniques and software languages and programs designed to enhance the capability of 
computers by incorporating some ability to reason in an manner analogous to humans. 
Some attractive or desirable reasoning characteristics are knowledgeable decision-making, 
flexibility, learning, and accommodation of incomplete or inexact data. However, the 
reasoning capability of the AI problem solving techniques can vary significantly. An 
example of very minimal reasoning capability is the compilation of human expert 
knowledge into a program (Le., "expert system"). This approach does not really differ 
from the present use of heuristic rules except that the scope is greater. Other approaches 
attempt to incorporate a greater understanding of the problem and process that knowledge 
directly in solving the problem. 

In assessing the use of AI for real time FDFM and, specifically, actuator FDFM, 
the emphasis is on the alternative problem solving techniques associated with AI, rather 
than the software languages and tools which have been developed to facilitate the 
implementation of these techniques. While these software languages and tools, such as 
LISP, PROLOG, and expert system shells, offer powerful new environments for program 
development, they do not by themselves change the FDFM capability. These tools, of 
course, may prompt the development of new problem solving techniques. Even so, 
improved problem solving capability is the result of better solution methods, and not 
necessarily due to the development tool or the software implementation used. 

While the distinction between AI and conventional problem solving approaches to 
FDFM is not always clear, AI methods in general tend to be characterized by qualitative or 
approximate quantitative approaches to problem solving. One reason for this is that many 
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AI methodologies attempt to imitate human reasoning which is often conceptual, symbolic, 
qualitative, or quantitative but only in a very approximate manner (e.g., "back-of-the- 
envelope" methods). In contrast, conventional approaches, like analytic redundancy, are 
formal quantitative approaches, developed based on some established mathematical analytic 
theory. However, other conventional approaches, like self test and direct redundancy, are 
very similar to some AI approaches in that they rely on heuristic or approximate quantitative 
approaches. 

This section assesses the potential usefulness of the alternate problem solving 
techniques associated with AI for real-time actuator FDFM. First, a description of the 
knowledge required for performing FDFM is presented. Then, the three general 
characteristics which determine the performance of AI techniques are discussed. In Section 
4.3, published approaches of AI for the general problem of FDFM are discussed and 
evaluated for use in real time FDFM. Finally, the potential role of AI methodologies in 
diagnosing and managing actuator faults is discussed. 

4.2 Knowledge Discussion 

Knowledge is fundamental to AI techniques. One manner of viewing AI problem 
solving techniques is that they take information and use knowledge to process the 
information with the product being a solution to the problem. Of course, even conventional 
problem solving approaches can be viewed in this manner. 

Consider each of the three separate tasks of FDFM - failure detection, fault 
isolation, and failure management - from this viewpoint. As described in Section 2, 
detection takes behavioral information about a system from the sensors and uses 
knowledge in the form of a behavioral reference model, a comparison test, and a threshold 
to produce a decision about the presence of a failure in the system (see Figure 4.1). Given 
that a failure has been detected, the isolation task takes information about the abnormal 
system behavior and determines the responsible component or subsystem failure (see 
Figure 4.2). Isolation requires additional knowledge about how the components or 
subsystems are interconnected, influence each other, and how they affect the behavior of 
the system (i.e., a structural or causal description). Decision logic to differentiate between 
the different possible failure candidates is also necessary. Finally, failure management 
takes the description of the failed system, both behavioral and structural (ie., which 
component or subsystem has failed) information, and determines the sequence of response 
actions to take (Figure 4.3). Behavioral and structural knowledge is necessary to assess 
the new functional capability. In addition, knowledge about the present performance and 
mission objectives is necessary so that the performance requirements can be modified to be 
within the present capability. 
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The knowledge incorporated in the FDFM system significantly determines the 
performance of the system. Three aspects of knowledge that determine its effectiveness are 
content, representation, and inference and control mechanisms. Knowledge content (Le., 
what is known a priori plus what has been gathered in real-time) determines what is known 
about the system being diagnosed. The representation scheme directly influences the way 
in which knowledge can be manipulated and maintained. The inference and control 
mechanisms determine how and what operations may be performed on the current 
knowledge to yield new knowledge and to generate output responses. 

4.2.1 Content 

One characterization of knowledge content that is useful for the fault diagnosis and 
failure management problem is the basis or source of the knowledge. Knowledge that is 
derived directly from underlying process or system and mathematical or physical laws is 
referred to by some artificial intelligence researchers as deep knowledge (Reference 20). In 
contrast, surface (or shallow) knowledge is only indirectly based on the fundamental laws 
pertaining to the problem domain. Empirical, experiential, or heuristic information usually 
acts as the primary source for such knowledge. Of course, any given knowledge base may 
contain a mixture of deep and surface knowledge. 

One benefit of a deep knowledge base is that it is more likely to be internally 
consistent and, therefore, the conclusions drawn from it tend to be logically valid. This is 
true because the system and the problem are being studied systematically. Assuring the 
consistency and completeness of a knowledge base developed using surface knowledge is 
difficult, since it may only be valid in specific situations. Therefore, conclusions based on 
such information are valid only under some conditions (and not generally true). 

Surface knowledge must be used when formal (deep) knowledge is difficult or 
expensive to develop or use. This may occur in areas where little theoretical work has been 
done, or where expertise does not exist. Whenever there is a rigorous understanding in the 
problem domain, though, an attempt should be made to exploit such information. 

4.2.2 Knowledge Representation 

The knowledge needed to solve a problem may be expressed in many different 
forms. Even though each individual structure may contain the same amount of 
information, not all representations are equivalent, Good representations facilitate problem- 
solving (Reference 8). Qualities of good representation include explicit representation of all 
significant features of the problem domain, suppression of unneeded or superfluous detail, 
and ease of use. Determining a suitable representation is an important design issue in 
developing an intelligent fault diagnosis and failure management system. Two issues 
relating to knowledge representation are discussed below. 
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4.2.2.1 Exdicit and ImDlicit ReDrese ntatlons ' 

In the context of a specific problem, some representations will produce a solution 
with less work, simply because the solution will manifest itself in a more explicit manner 
(e.g., a look-up table is a more explicit representation of the solution than a rule-based 
implementation of the same information). For other representations, the solution still exists 
and may be elicited, but not necessarily by a straightforward or self-evident procedure. 

Clearly, an explicit (with respect to a specific problem) representation is highly 
desirable, simply because most of the work involved in solving a problem will already have 
been done. However, it may be difficult to generate such a representation and a more 
implicit one may have to suffice. In addition, an explicit representation may be suitable for 
only a small class of problems such as diagnosing specific component or subsystem failure 
modes. Implicit representations may be able to solve a wider variety of problems. 

One difficulty with implicit representations is that the effort required to determine a 
solution may be prohibitive in terms of computer and other resources. In addition, the 
time-to-solution is, in most cases, unknown; however, determining an upper bound on the 
time-to-solution may be possible. Both of these difficulties are especially important for 
real-time fault diagnosis and failure management. Real-time problem solving requires the 
ability to supply partial or approximate solutions at any time during the solution process, in 
the event that no time remains for the complete or final result to be derived. 

4.2.2.2 Quantitative and Oualitative Representations 

Representations can either be quantitative or qualitative. Quantitative objects may 
be expressed and manipulated numerically; the advantage being that there is a high degree 
of resolution available and that this resolution is preserved (or at least well-defined) under 
most mathematical operations. Qualitative objects m used to express conceptual entities 
which lack or do not require the precision associated with quantitative objects. Rather than 
saying the likelihood of failure is 1'0.85" on a scale of 0 to 1, we say that the likelihood of 
failure is "high." Qualitative methods are useful in situations where the conclusions and 
data can only be classified in a rough, unprecise manner. Under such circumstances, 
qualitative techniques become the only means of proceeding. 

4.2.3 Inference and Control 

Inference is the process of transforming information implicitly contained within a 
specified representation into a more explicit form. To do this, objects which are currently 
explicit must be manipulated or combined with real-time information to uncover new facts. 
Control mechanisms are procedures for directing and regulating inference. The 
representation actually chosen is of critical importance and directly impacts the manner in 
which reasoning (inference and control) will occur. 
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4.3 AI ADDroaches of Fault Diamos is and Failure Manwme nt 

There are numerous technical papers and articles which present artificial intelligence 
approaches of fault diagnosis (see bibliography). To give some understanding how AI is 
being used, five of the diagnostic systems or approaches are first described in some detail. 
These specific systems and approaches are representative of the majority of the literature on 
this subject. While the published approaches often appear to have significant differences, 
there are two basic new problem-solving approaches which they bring to the FDFM 
problem. These approaches are identified and discussed next. Finally, the approaches are 
evaluated by examining how they have been applied in three different domains and 
conclusions are presented regarding their applicability to real-time FDFM. 

4.3.1 Five Illustrative AI Svstems or ADproacheS 

Five AI systems or approaches are summarized. For the systems presented, they 
only use AI in part. Nevertheless, the entire system is described to help support some 
conclusions about the potential for AI in the real-time aircraft FDFM problem. The systems 
and approaches presented here were developed for three application areas: aircraft, chemical 
or industrial processes, and digital electronics. As will be discussed later, the application 
domain fundamentally affects the applicability of AI methods. 

4.3.1.1 Rule-Based Flight Control System 

The Rule-Based Flight Control System (RBFCS), described in References 21 and 
22, combines analytic redundancy and AI for the purpose of fault-tolerant flight control. 
Failure accommodation is broken down into three major tasks: failure detection, failure 
isolation, and reconfiguration. Failures are detected using residuals of a Kalman filter (i.e., 
using a model of the normal behavior of the system which, in this case, is a helicopter). 

The failures are isolated in three phases consisting of (1) generation of the failure- 
origin hypotheses, (2) generation of the failure-model hypotheses, and (3) testing of the 
hypotheses by comparing failure-model results with actual failed behavior. Rules which 
relate abnormal flight behavior to specific aircraft components are contained in a knowledge 
base. The failure-origin hypotheses are generated by a forward-chaining search of this 
knowledge base, resulting in a list of control surface and sensor failure candidates. 

The RBFCS has a database of predetermined failure-models (only bias and stuck 
failure modes are considered in Reference 22). Guided by the failure-origin hypotheses, 
the system selects a subset of these models to be used as likely failure-model candidates. 
Specific numerical estimates of any apparent stuck surface positions or sensor biases are 
computed at this time, based on rules developed from linear simulation runs. A buffer 
containing a time-history of control commands, sensor measurements, and state estimates, 
is used to initialize each model. Subsequently, each failure-model is run over the given 
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(post failure) time-history; then the model which has the closest correspondence with the 
actual measured behavior is chosen as the most appropriate new description of the actual 
system dynamics. 

Given an estimate of the dynamic model representing the failed aircraft, the 
reconfiguration task suggests (in the form of a modified set of Kalman filter and linear 
quadratic regulator gains) remedial changes to the control system. At this time, 
compensation is provided for the effects of sensor biases and stuck surfaces. Some 
failures may also require additional compensation to restore trim; heuristics and an analytic 
method based on a weighted left pseudo-inverse operation are used for this purpose. 

Unlike any of the other approaches examined, the RBFCS is a complete failure 
diagnosis and reconfiguration system. However, many parts of the system are simplistic, 
and would require substantial work before being ready for realistic implementation. 

4.3.1.2 Onboard Aircraft Fault Diamos is Svste m 

A general framework for fault monitoring and diagnosis is described in References 
23 and 24 as well as an implementation of this framework for engine and hydraulic system 
fault diagnosis. The diagnostic process is divided into stages, each having a different 
reasoning strategy and conceptual representation. These stages are ordered according to 
increasing computational and representational complexity. Successive stages are entered 
only when prior stages are unsuccessful at diagnosing a given failure. 

Detection is accomplished by comparing sensor data to the output of a model that 
simulates the normal functioning of the physical system. A fault is declared whenever the 
actual and expected signals fail to match to a sufficient degree. Heuristics are used to 
identify normal conditions which the model is incapable of recognizing, thus reducing the 
number of false a l m s .  The fault model then generates symptoms of the aberrant behaviar 
in a qualitative form (e.g., "fuel flow is high"). Additional information is also produced, 
such as the time when the abnormality was first detected, or the dynamic behavior of an 
output (e.g., "fuel flow is increasing" or "fuel flow is fluctuating"). This set of symptoms 
becomes the input to the fault isolation system. 

In the first stage of diagnosis, the qualitative symptoms are compared with fault- 
symptom associations known u priori. These associations are a compilation of knowledge 
about known faults and their behavior. This procedure corresponds to traditional rule- 
based inference from symptoms (deviant behavior) to components (faulty structure). This 
stage is attempted fmt since it will quickly identify the most commonly occurring faults. 
However, an evaluation described in Reference 24 found that this stage, as presently 
implemented, produced many false a l m s .  Some faults included in this stage could not be 
clearly distinguish from other faults and therefore caused the false a l m s .  

The second stage of diagnosis occurs only if the f is t  stage fails; that is, when the 
current symptoms fail to correspond to a known fault hypothesis. (The implementation of 
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the first stage also produced a diagnosis for every test case in Reference 24. As a result, 
the second stage would seldom be used with this implementation.) The reasoning in the 
second stage is based on a functional model of the underlying physical system. This 
qualitative description is used to reason about other component failures that might produce 
the observed symptoms. First a specific component failure is assumed, then the effects of 
that failure are determined, and finally a check is made to see whether all of the observed 
symptoms have been explained. Thus, the second stage solution approach is a form of the 
generate and test procedure. The second stage worked fairly well according to the 
evaluation in Reference 24. 

Because not all parameters and behaviors are observable, and because of such 
factors as system feedback, localization may not be possible without further information. 
If this is indeed the case, a third stage is entered which proposes tests, of either an active or 
passive nature, to obtain additional information. The ability to interactively test a 
questionable subsystem may prove to be extremely useful in forming a conclusive and 
unique diagnosis. However, the usefulness of this stage for aircraft diagnosis may be 
limited; it is not described as part of the system in the latest of the references. 

This system is an example of the layered approach. At the lowest levels, the most 
likely or most obvious failures are considered first. If no conclusive results are produced at 
this stage, then the current set of facts is passed on to the next level for more rigorous and 
detailed analysis. In the event that no stage produces a final diagnosis, the monitored 
system will be perturbed to provide additional information. Control is then passed back to 
the first stage for renewed analysis. 

4.3.1.3 The Method of Governing: Eauatio nS 

The Method of Governing Equations (References 25 and 26) diagnoses faults by 
considering the material and energy balances, rate equations, equilibrium relations, etc. 
(Le., the governing equations) of a process. These equations provide a set of constraints 
on the values of process variables, provided that the system behaves as expected. 
Significant violations of these constraints are indicative of process faults. Thus, detection 
is performed simply by checking whether the observed variables satisfy the constraint 
equations, within some tolerance margin. 

If a constraint is violated, then each of the variables "constrained" by that relation 
becomes a candidate for further examination. Suspect variables may be exonerated if they 
appear in separate unviolated constraints (assuming that a set of abnormal observed 
variables will not happen to satisfy any constraint). Application of this principle results in a 
reduced set of suspect variables. During the development of the diagnostic system each 
fault is anticipated to affect one or more of the observed variables. These causal 
relationships may be reversed to produce a set of candidate faults from the suspect 
variables. Finally, each of these fault hypotheses is checked for consistency against the 
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observed pattern of constraint violations. Any fault candidate which affects too many or 
too few of the suspect variables is discarded. Assuming single failures only, the actual 
fault will be the only one that is consistent with the observed pattern of constraint 
violations. 

The Method of Governing Equations, as described in References 25 and 26, seems 
best suited to applications where there are little or no significant dynamics involved- 
indeed, it seems most amenable for monitoring processes which operate in some steady- 
state fashion. Under such circumstances, deviant behavior appears as a violation, by some 
observed variable, of an admissible operating range. 

4.3.1.4 Fault Analvsis Consultant 

The Fault Analysis Consultant (Falcon), as described in Reference 27, is an expert 
system for on-line alaxm analysis in power and process plants. Falcon reasons backwards 
from observed behavior to possible causes and rates these fault candidates according to 
how well they account for the observed behavior. The candidates with the highest rating 
are chosen as the most likely causes of a fault. One advantage of this approach is that it 
finds likely causes even when more than one fault is present. 

In operation, Falcon is given a model of the process to be monitored and a list of 
current sensor values for the observed variables. These quantities are converted to 
qualitative values, indicating only whether they are OK, HIGH, or LOW. Falcon reasons 
backwards from the observed data, with the help of a causal model, to identify all the faults 
that might be used to explain the observed behavior. This set of component failure 
candidates is then ordered according to some likelihood index. Falcon can also explain 
why it believes each of these candidates is likely, based on the observed data. 

The plant is modelled as a system of interconnected components. Thebe 
components are tied to each other by one or more variables, such as pressure, temperature, 
and flow, that can be measured at the interface between two components. Inputs and 
outputs are not explicitly labelled as such in the model, since the output of a component can 
become an input, and vice versa, when a fault occurs (i.e., a failure of one system element 
may effect other components upstream). For example, a short may alter an electrical 
circuit, signficantly altering the structure of the circuit. Furthermore, it is assumed that 
each component (pipe, pump, reactor vessel, etc.) is well-understood and can fail in known 
ways. There are thus three kinds of objects in the plant model: components, variables and 
failure modes. 

The knowledge base contains data on all three types of objects. Stored with each 
component is a text description, a list of its input and output variables, possible failures, 
and disturbance propagation behavior. The propagation of failures through normally 
operating components is modelled by rules which state how a deviation in one connecting 
variable can cause deviations in other connecting variables. In addition, the rule-base 
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contains special knowledge about when chains of reasoning must be broken to avoid 
erroneous conclusions. 

After the tracing phase (candidate generation) has concluded, Falcon rates the fault 
hypotheses via fault simulation. Two numbers are computed for each hypothesis: (1) the 
number of observed variables explainable by the hypothesis, and (2) the number of 
observed variables inconsistent with the hypothesis. One hypothesis is more likely than 
another if it explains more observed variables. Among hypotheses that explain the same 
number of observed variables, a hypothesis is more likely if it is inconsistent with fewer 
observed variables. In the event that multiple faults are present, several highly ranked 
hypotheses will emerge from Falcon's analysis. 

The process model used by Falcon is qualitative. So much information is lost by 
classifying precise quantitative values as either HI, LO, or OK, that the effects of 
interactions cannot be handled by simply combining the local relations into a model. Extra 
meta-rules have to be added which prevent conflicts by taking precedence over other rules. 

The basic disadvantage of the current version of Falcon is the assumption that the 
monitored process is in a steady-state of operation. This is certainly not the case for many 
processes, particularly during startup, shutdown, and transitions between operating points. 
Some disturbances spread slowly through a process, disturbing observed variables at 
different times. A causal model could include time delay information so that intelligent 
diagnoses may be made while disturbances are propagating. Such temporal reasoning 
capability might allow for more accurate diagnosis. 

4.3.1.5 Diagnostic Reasoning Based on Structure and Behavior 

The approach described in Reference 4 is intended to reason from first principles, 
i.e., by directly applying knowledge of the structure and behavior of the subject of interest. 
This system has been implemented and tested on several troubleshooting examples in the 
domain of digital electronic circuits. Several advantages of this approach have been 
identified, including a significant degree of device independence; the ability to constrain the 
hypotheses it considers at the outset, yet deal with a progressively wider range of 
problems; and the ability to deal with situations that are novel in the sense that their outward 
manifestations may not have been p~viously encounted. 

The basic strategy underlying this approach is f m l y  entrenched in the generate and 
test algorithm. The main steps to be performed in a diagnosis a: 

1. Candidate generation: preliminary candidates are selected by considering 
the faulty behavior of the device. Knowledge of how behavior relates to 
structure (causal knowledge) is used to perform this task. 

2. Hvpothesis test ing: failure hypotheses are tested by checking their 
ability to explain, in a consistent manner, the observed deviant behavior. 
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3. Iteration: the first two steps are repeatedly applied until a failure 
candidate is produced which satisfactorily accounts for the observed 
fault behavior. 

The monitored system is modelled as a network of nested sub-units, with the 
lowest level components treated as "black boxes" which are governed by one or more 
constraint relations. Faults are declared whenever the observed behavior differs 
significantly from the expected constrained behavior. Fault candidate generation may be 
achieved through constraint suspension; Le., by choosing some constraint (component 
behavior) whose retraction will leave the network in a consistent state. This approach leads 
to a strategy for troubleshooting based on the methodical identification and relaxation of 
underlying assumptions. Constraint suspension in conjunction with a nested representation 
achieves two purposes: (1) it reduces the amount of information that needs to be considered 
at any one time, and (2) it allows for virtually unlimited examination of a system in 
increasingly greater detail. 

One very interesting idea presented in Reference 4 proves to be useful in both 
troubleshooting and in the selection of model representations: the concept of adjacency. 
Devices interact because they are in some sense adjacent- electrically adjacent (wired 
together), physically adjacent (hence "thermally connected"), electromagnetically adjacent 
(not shielded), etc. It is postulated that faults can only occur within a component or 
between components that are adjacent. Thus, each definition of adjacency can be used as 
the basis for a unique model representation, having a distinct interpretation of what it means 
to be adjacent. The multiplicity of possible representations helps to explain why some 
faults are especially difficult to diagnose: they result from interactions between components 
that are adjacent in a sense that is unusual or subtle. 

4.3.2 Contributions of AI to FDFM 

The AI research in the domain of FDFM, as can be seen from the above 
descriptions, has concentrated on fault isolation rather than failure detection or fault 
management. Failure detection is based on a quantitative model of normal behavior or a 
threshold on observed variables, if addressed at all. Some approaches simply assume 
failure detection. With regard to fault management, little has been done beyond the level of 
simple reflex response actions. In contrast, fault isolation has received considerable 
attention because the problem can be naturally posed as a search problem. Indirect or 
iterative solutions are necessary since, in general, direct methods of fault isolation are 
unavailable; the transformation of a behavioral description of a failed system into an 
equivalent description of the structure of the failed system is difficult. This is 
fundamentally the case because most physical systems are nonlinear and therefore the 
behavior cannot be inverted to get structm. 
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AI is particularly suited to solving this search problem since the search space, 
consisting of all components and combinations of components which may fail, is finite and 
discrete (Reference 8). Conventional search techniques which rely on the underlying 
continuity and smoothness of the search-space cannot be applied to this domain. The 
search procedure used by the AI diagnosis systems is essentially the generate and test 
procedure described in Section 2.2.3. Given the system description and a set of 
observations, fault candidates are generated and then tested simulating the behavior of the 
system with that failure. A fault hypotheses is scored according to how well the simulated 
behavior associated with that candidate compares with the actual observed behavior. The 
most consistent hypothesis is chosen as the final result. 

The generation of a candidate failed component or set of components could be done 
simply based on a list of the components. However, this would require exhaustive search. 
Instead, causal models, which qualitatively relate behavior to structure, are used to guide 
the search process. The objective is to efficiently produce a small set of candidates that is 
guaranteed to contain the actual fault using some form of causal knowledge. Fault 
hypothesis testing requires knowledge that specifies some abnormal behavior for a given 
faulty structure. Two kinds of models may be used to perform the fault simulation step: (1) 
an analytic quantitative model of system behavior as in the RBFCS (Reference 22) and (2) 
a qualitative model of system behavior as in Falcon (Reference 27). 

Based on this discussion, AI fault isolation techniques can be seen to differ from 
conventional approaches through the use of search through a causal model and, perhaps, 
qualitative behavioral modeling. Causal models and qualitative behavioral modeling are 
discussed further; the details of guiding search can vary widely and are beyond the level of 
discussion here. 

4.3.2.1 Causal Models 

A causaZ model is a conceptual representation which explicitly describes structure 
and the manner in which it influences behavior (Reference 4). Although, causal knowledge 
relates structure with behavior, kause with effect," causal models are not designed to 
describe the input-output behavior of a structure, as are behavioral models. Instead, causal 
models describe the degree and manner in which elements of a system may influence the 
behavior of other system elements. Note that causal models tend to be qualitative, 
explicitly relating behavior to structure in a precise quantitative manner is difficult. 

A simple causal model is shown schematically in Figure 4.4. The nodes all 
represent devices which can fail (Le., components or sensors). Links are meant to describe 
the existence of an important causal relationship between the two specified node objects. 
Several characteristics common to all causal models are implied by the diagram. Despite 
the fact that no specific information has been provided regarding the nature of the causal 
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Figure 4.4. Simple causal model. 

links in Figure 4.4, it is possible to infer a great deal about the propagation of abnormai 
behavior in this model. If any node object has failed, the set of objects which may be 
affected by this failure is easily computed. Such a computation makes use of forward 
causal reasoning, in which inference follows the normal direction of causality (from cause 
to effect). Alternatively, one may want to know what set of node objects might contribute 
to the abnormal behavior which has been detected at a particular sensor. This involves 
reasoning backwards through the causal model, from observed effects to underlying 
causes. Typically, this set will contain more than one node object (and should contain the 
original sensor as well). If other sensors have detected abnormal behavior as well, then 
additional fault candidate sets may be generated as well. In those cases where no 
behavioral discrepancy has been detected at a sensor, then one might reason backwards to 
identify the set of components which should be working normally in order for the sensor to 
observe no abnormality. Putting all of this information together, a diagnostic system can 
employ both forward and backward causal reasoning to identify a subset of components, 
any of which, failing singly, is capable of producing the observed behavioral 
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discrepancies, and yet will not affect the behavior of those sensors which detected no 
discrepancies. Multiple failures may also be considered. This final fault candidate set may 
contain many node objects or no node objects which satisfy the constraints of the causal 
model and the observed discrepancies. 

Note that the causal links in Figure 4.4 might contain functional information which 
can be used to further distinguish fault candidates and rule out some paths of causal 
interaction which are based purely on connectivity. 

To examine how a causal model might be used to reduce the number of component 
failure candidates, consider the example in Figure 4.5. In this example, discrepancies 
between observed and expected system behavior have been detected at sensors 3 and 4. 

0 COMPONENT @ SENSOR 

___) CAUSAL RELATIONSHIP 

Figure 4.5. Possible component failure candidates for the simple causal model 
given observed discrepancies. 
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The behavior observed at sensors 1 and 2 is normal. Fault propagation paths are implied 
by the directed arrows of this causal model. Reasoning backwards to deduce which 
components might have failed to produce the observed distribution of discrepancies, one 
finds that only components 1, 2, 3, 4, 5, and 6 could have influenced sensors 3 and 4, 
without also affecting sensors 1 and 2. Thus, only components 1, 2, 3,4, 5, and 6 and 
sensors 3 and 4 themselves, need be considered for further analysis. All other components 
and sensors have been exonerated. Application of this simple causal model has helped 
reduce the number of components (and sensors) under consideration Erom 15 to 8. If the 
single fault hypothesis is also applied, then components 2, 3, 4, and 6 are exonerated as 
well. This is because only components 1 and 5 are each individually capable of producing 
the observed distribution of discrepancies. When the single fault hypothesis is used, the 
number of fault candidates in this example becomes only 2: components 1 and 5. If either 
Component 2, 3, 4, or 6 is determined to be faulty (based on other information), then 
necessarily a multiple fault exists, since Component 1 or 5 or Sensor 3 must also have 
failed. 

Unfortunately, the presence of faults themselves can affect system causality. For 
example, normal system operation between two components may be approximated well by 
a casual link that is unilateral: the first component can influence the second but not vice 
versa. However, the effect of the fault may be to alter the physical nature of the interaction 
in such a way that the causal relationship can no longer be considered unilateral. In such an 
event, reasoning based on the original noma1 causal model may be flawed. Another way 
in which faults can violate modeled causality is when a single component fails and damages 
other nearby components which are physically close, but otherwise unrelated (and hence 
would not be included in the causal model). See Reference 24 for examples of this. 
Reference 4 attempts to handle these concerns with the concept of "adjacency". Still 
another way in which a fault can affect system causality is by effectively severing a normal 
causal link (e.g., an electrical open circuit or a severed linkage). 

Causal knowledge may be represented explicitly using a number of methods: 
connectivity models, fault trees, directed graphs, and rule-based causal models. Each of 
these are now considered briefly. 

Causal Connectivity. The simplest type of causal model merely describes the causal 
connectivity within a system. The model consists of (1) the components of interest and (2) 
a relation defined for every pair of components which describes whether or not the 
components can influence one another. Frequently, only the most important or likely paths 
of causal interaction are modelled. Causal connectivity models are usually based on purely 
structural connectivity descriptions of systems, with the assumption that each physical 
signal or power connection between components of a system is a possible path of causal 
interaction. 

In many cases, it may be difficult to describe the behavior and function of a system, 
yet simple to describe the connectivity. Causal knowledge based on connectivity can be 

57 



used to guide diagnosis even when the function or input-output behavior of a device is not 
known. Because it is a relatively straightforward representation (and in fact may be 
completely represented in a simple binary form), using connectivity to reason about 
causality can be computationally efficient. As a result, it may be desirable to use 
knowledge of connectivity to isolate a subset of candidates quickly, and then employ more 
sophisticated methods (such as generate and test) to further isolate the fault. 

Simple causal models based on structure only (as opposed to structure and 
function), are qualitative and suffer from a certain lack of resolution due to multiplicity and 
non-uniqueness in the causal model (Reference 26). In order to reduce the number of fault 
candidates present at this stage, further reasoning based on function may be used. By 
considering how the normal function of each component should affect its input-output 
behavior, more fault candidates can be eliminated. 

Fault Trees, One traditional approach used for fault isolation is based on thefault 
tree. A fault tree is a graphical representation which relates "top-level" behavioral events 
(observable symptoms) with logical combinations of the "primary" events required to cause 
the top-level events to occur. The primary events include generic hardware failures, human 
error, or environmental conditions. Examples of different fault tree methods may be found 
in References 28 - 32. 

Fault trees are based on a cause/consequence representation of the system. 
Beginning with the top-level event, reasoning proceeds backwards towards the primary 
events. Conceptually, this approach is not very different from the diagnostic procedure 
outlined previously for structural connectivity. The main differences are: (1) the 
representation chosen, (2) the inference procedure defined for the representation, and (3) 
the information contained in the representation. Since (1) and (2) are really only 
implementation issues, the only essential difference between the approaches is in the causal 
information contained in the model. 

Directed Graphs. The structural connectivity and fault tree approaches are 
encompassed by more general representations known collectively as directed graphs. 
Directed graphs are a knowledge representation framework which consists of a set of 
objects (the nodes) and a set of relations between the objects (the links). Directed graphs 
may be used to explicitly describe the structure and causal interactions of a system (see for 
instance, References 28, 33-35). Directed graphs with nodes representing the state 
variables of a system and links representing the dynamic causal relations between variables, 
have also been used for fault diagnosis (e.g., References 21 and 36). 

The degenerate case of a directed graph representation is simply the causal 
connectivity model shown previously in Figure 4.4. Directed graphs may contain special 
information pertaining to the nature of individual causal interactions. For example, 
information related to the likelihood of fault propagation or the approximate fault 
propagation time may be associated with each causal link. Such information is used in 
more sophisticated backward reasoning methods. The advantage of additional causal 

58 



information is obvious: more informed decision-making can be brought to bear during 
backward reasoning, allowing for greater distinguishing capability. The end result is that 
fault candidate generation proceeds under better guidance; a larger number of candidates 
may be eliminated at each step, so that overall the generate and test process is more 
efficient. 

Ex~ert  Svstems. Causal models can also be easily represented using expert system 
software such as rule- or frame-based systems. An alternative method of causal modeling 
is to use expert knowledge. While the causal modeling may not be explicitly stated, it is 
implicit in the heuristics generated by an expert or experts. The difficulty with expert 
knowledge is validating its consistency. 

It is possible to invert causal knowledge expressed as rules, by using backward 
chaining (which involves some degree of search). Because it is relatively natural for a 
person to think in terms of forward causality (from cause to effect) and because production 
rules are easily written in this form, it is not difficult to produce a diagnostic system which 
is built around a rule-based causal model. Examples of this type of system are the systems 
in References 37 - 39. Unfortunately, these systems tend to be little more than automated 
versions of the knowledge represented in repair manuals or fault trees. There is clearly 
some benefit (in terms of speed, flexibility, verification, etc.) to this automation, but no 
novel contributions have been made in terms of modeling the causality of a system or 
isolating faults. 

4.3.2.2 Oualitative Behavioral Modeling 

Some AI approaches also differ from conventional fault diagnosis techniques in that 
the behavior of the system is qualitatively determined. Two approaches of qualitatively 
determining the behavior of a system are (1) propagation through a causal model using 
component qualitative behavior and (2) qualitative simulation. In the first case, typicallj , 
simple heuristics are used to describe the component's output for given inputs. Falcon 
(Reference 27) and the system in Reference 40 are two systems which use this approach. 

Qualitative simulation is a technique for representing systems and inferring system 
behavior in a formal, yet imprecise, manner, based on a description of component behavior 
or a mathematical model. Qualitative simulation is guaranteed to produce every possible 
(qualitatively different) behavior; unfortunately it may also produce spurious behaviors as 
well. There are a number of reasons for choosing this method over classical quantitative 
simulation techniques (References 41 - 43): 

Precise quantitative information about a particular system or phenomenon may not 
be available. Limited information may be unusable unless qualitative methods are 
employed. 

Quantitative simulation may be computationally intensive, whereas qualitative 
simulation is normally very efficient. 
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Quantitative representations tend to obscure the underlying structure of a system 
and consequently may not be readily used to infer the state of individual 
components . 

A number of criticisms of qualitative simulation have been discussed by References 41 and 
42. To ensure that a genuine behavior is produced, the underlying structural model used 
for simulation must be known to be consistent; when several possible behaviors are 
produced, further analysis is required to remove spurious ones (Reference 41). Although 
qualitative simulation can predict that certain qualitative behavioral transitions (such as 
maxima, minima, or zero-crossings) will occur in a specified sequence, it cannot associate 
a magnitude with such events nor can it place them absolutely in time - only the order of 
such events is determined. 

4.3.3 Evaluation of the AI Techniques 

The types of systems to which these AI problem-solving techniques might be 
applicable can be inferred in part by the characteristics of the systems to which they have 
already been applied. Three application areas are considered: chemical or industrial 
processes, digital electronics, and aircraft. 

4.3.3.1 Chemical and Industrial Processes 

Chemical and industrial processes are typically nonlinear, difficult-to-model 
systems. Plant operation is characterized by steady operation at setpoints and transitions 
between setpoints. The time constants associated with setpoint transitions and process 
disturbances can be relatively large (especially for chemical processing plants); 
consequently, the propagation of abnormal behavior through the system cannot be 
considered instantaneous. Diagnosis is used in this domain as a means of implementing 
simple automatic safety features, or more generally, as a means of augmenting the 
supervisory control function. 

Traditionally, failure detection is based on range-checking with fixed threshold 
alarms; isolation is achieved through the use of fault trees; and fault management consists 
of explanation and simple safety reflex actions. The purpose of AI process control 
diagnosing systems is to reduce the multiplicity of alarms presented to the plant operators 
as a result of the propagation of abnormal behavior. This is accomplished by reasoning 
backward from the multiple alarm indicators to a smaller number of actual sources, based 
on a causal model which includes likely fault propagation paths. The failure source or 
sources are determined by propagating or simulating the effect of the candidate failures in a 
qualitative manner and selecting those failures which best account for the alarms. 

Causal reasoning is used because chemical and industrial processes are large 
systems with many possible causes of failure. The qualitative simulation of the effect of 



the failure is used because of the system's slow dynamic nature and the large effort that 
would be required to model the behavior of the systems more precisely. 

4.3.3.2 Digital Electronics 

Diagnosis in the domain of digital electronics generally involves troubleshooting 
systems which can be modeled exceptionally well. The difficulty of diagnosis in this 
domain is the relatively large number of fault sources which are considered (generally, all 
components and combinations of components). As a result, diagnosis in this area has been 
treated as a search problem of a causal model of the system. Causal knowledge is used to 
guide the search process. The problem differs from process control in that active testing is 
allowed. The design objective of many approaches is to incrementally diagnose (i.e., 
sensor information is added incrementally) the faulty system using a minimum number of 
active tests (which are selected by the diagnostic algorithm). 

4.3.3.3 Aircraft Svstems 

Most of the AI applications to aircraft are for hydraulic and mechanical subsystems. 
Reference 37 uses fault trees to perform off-line diagnosis of an actuator, References 38 
and 44 use causal models to diagnosis hydraulic and power train failures respectively. The 
Onboard Aircraft Fault Diagnosis System, discussed earlier, uses causal models to isolate 
hydraulic and engine failures. These diagnostic systems are very similar to those in the 
previous two subsections although the dynamics of the application subsystems may be 
faster than processing plants. 

The only application similar to that of a real-time actuator FDFM system is the Rule- 
Based Flight Control System (RBFCS) described above. The purpose of the RBFCS is to 
detect and isolate aircraft sensor and actuator failures and to reconfigure the control systcr- 
to accommodate these failures. Aircraft are characterized by dynamic, relatively linear, 
behavior and small time constants. As a result, quantitative simulation using aircraft 
normal and failed model description were used for failure detection and testing of the 
candidate hypotheses. Causal models were used to assist in the generation of the failure 
candidates. 

The following conclusions regarding the applicability of AI to real-time FDFM are 
based on this review of artificial intelligence approaches to fault diagnosis and failure 
management. 

(1) Existing artificial intelligence approaches to fault diagnosis seem best suited for 
systems which normally operate in a steady-state rather than a dynamic mode. 
Fewer simplifying assumptions can be made when considering general dynamic 
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behavior versus steady-state operation. In dynamic systems, "normal" transient 
behavior must be distinguished from faulty behavior. Thus, modeling will be 
more difficult in the dynamic case, as will be failure detection and isolation. There 
are many approaches for diagnosing failures in steady-state systems; there are 
very few for diagnosing failures in dynamic systems- and those that exist tend to 
be analytic in nature. Detecting and isolating failures in dynamic systems 
frequently requires precision; qualitative descriptions are unable to provide this 
precision as well as quantitative analytic techniques. 

While this conclusion applies most obviously to qualitative behavioral modeling, 
causal modeling is also more difficult for highly coupled, fast dynamic systems as 
the effects of the failure may propagate quickly throughout the system. 
Significantly reducing the search space with causal reasoning will be difficult 

(2) Searching through a causal model is best suited for systems which have a large 
number of elements (components or subsystems) to which diagnosis is required. 
Explicit search is not necessary with a small number of components, a large 
sensor-component ratio, and the local isolation approach used. 

(3) The problem of isolating failures in real-time for critical components has not been 
addressed at all, except by the RBFCS. Instead, the emphasis is on off-line 
troubleshooting. The difficulties with using search or an iterative solution 
technique are uncertain convergence characteristics, variable solution time, and 
some degree of arbitrariness. These characteristics result in significant questions 
about the applicability of searching through a causal system for real-time critical 
opera tion. 

4.4 The Potential Role of AI in Diagnosing and Managing Actuator Faults 

The AI approaches to fault diagnosis discussed above do not appear to have much 
potential for application to the actuator FDFM problem. For failure detection, the only AI 
approach that could possibly be applicable would be to model the behavior of the system 
qualitatively. However, qualitative behavior modeling would not be adequate for fast 
dynamic systems, lacking precise to differentiate between the normal and failed behavior of 
those systems. This conclusion is supported by need to detect, isolate, and respond to a 
failure of any significance in approximately 0.1 seconds without much of a transient in the 
position of the control surface (Reference 18). The failure must be detected in the midst of 
significant dynamic behavior. 

The AI approaches to isolation are based on the indirect solution process of 
"generate and test." While these approaches may have potential for large complex systems, 
there are only a limited number of components to be considered in actuator diagnosis. In 
addition, an actuator is typically well instrumented; this relatively high sensor-to- 
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component ratio helps to quickly focus the search for the failed component. The search for 
the failed component can be easily and explicitly described for an actuator, negating the 
need for use of these AI approaches. 

While the surveyed AI approaches do not appear useful for actuator FDFM, there 
are three uses of AI which may be of benefit: (1) augmentation of conventional techniques; 
(2) accommodation and management of uncertainty; and (3) the development and 
maintenance of the diagnostic system software. 

4.4.1 Aumnentation of Conventional Techniques 

For the specific problem of actuator fault diagnosis, artificial intelligence technology 
should be used to augment rather than displace conventional diagnostic methods. Existing 
techniques such as direct redundancy, analytic model-based algorithms, and self test are 
well suited for actuator component failure detection. However, these techniques have their 
limitations. Self tests can detect only certain types of failures. Direct redundancy requires 
hardware replication which is expensive. In addition, if there are significant variations in 
the performance of duplicate components, failure detection performance will be degraded. 
Analytic redundancy requires accurate models which, for an actuator, may be difficult to 
develop and computationally costly to implement. 

Conventional techniques may be augmented either directly or in parallel. In the first 
case, qualitative knowledge could be used to improve the conventional test. One example 
of this might be to incorporating heuristics with an analytic model-based test to reason 
about modeling errors or to handle special cases (Reference 24). The benefit might be 
reduced model complexity or reduced false alarms. In the parallel case, qualitative 
information and knowledge could used with another test to help confirm the result of the 
conventional test. An example of a qualitative test would be to check to see if the power 
ram piston is moving towards the commanded position if the error has remained large for a 
period of time. 

4.4.2 Accommodation and Manapement of Uncertainty 

A decision-making system such as an actuator FDFM system must be able to 
accommodate and manage uncertainty; it must have some appreciation of the accuracy and 
applicability of the information and knowledge it uses. Uncertainty may exist in a variety 
of forms and be associated with each of the following: 

a priori assumptions about the problem domain 
knowledge-bases (analytic or qualitative models, rule-bases, etc.) 
real-time information (observations from sensors) 
meta-rules and heuristics (rules for combining evidence, restricting search, 
resolving conflicts, etc.) 
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An important first-step in the accommodation and management of uncertainty 
requires that it be explicitly represented. Measures of certainty or belief can be be 
automatically manipulated and maintained during calculations and inference processes. 
Once a means of expressing the uncertainty associated with each element of the knowledge- 
base exists, then active steps may be taken to monitor and reduce it. 

There are conventional approaches to modeling and making decisions in the 
presence of uncertainty, none of which are used presently on actuators. However, they 
require a quantitative model of the uncertainty in the system (e.g., a stochastic process). 
Except for a few components like sensors, the availability of quantitative models of 
uncertainty, especially model uncertainty, is questionable; qualitatively describing the 
uncertainty in the decision tests and in the diagnostic decision-making process appears to be 
more likely. A variety of AI-based techniques exist for reasoning (i.e., making decisions) 
in an uncertain environment. These include certainty factors, probabilistic logic, fuzzy 
logic, Dempster-Shafer theory, etc. These approaches differ primarily in (1) the way in 
which uncertainty is represented and (2) the manner in which evidence from multiple 
sources is combined. 

Another approach to reducing uncertainty in the decision making process is through 
the use of redundant information and knowledge (Le., supporting evidence). Using 
multiple detection tests for the same component is one possible source of redundant 
information. Reference 45 suggests that a low false alarm rate may be possible even with 
modeling errors as high as 30% by using redundant tests. Alternatively, some qualitative 
knowledge or information such as the direction in which a servovalve spool is moving may 
be useful. When using qualitative and quantitative information and knowledge from a 
variety of sources with differing informational quality and precision, flexible mechanisms 
for combining and integrating the individual results are required. An example of such a 
mechanism is a meta-rule for combining intermediate results of differing quality and 
precision. 

4.4.3 Diamostic Sv stem DeveloDment 

During the design and development of a diagnostic system, artificial intelligence 
technology can be particularly useful for the conceptualization of the problem and its 
solution. In particular, AI provides a convenient environment for software development 
and testing. AI programming tools are typically "user friendly," easily modified, and often 
come with an assortment of debugging tools. In addition, some of the AI software 
packages support linking to other programs written in other languages, facilitating the 
development of a diagnostic system which combines both qualitative and quantitative 
knowledge and information. 
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4.5 Conclusions 

Artificial intelligence technology is beginning to find found extensive application in 
the area of automated diagnosis. However, the fast dynamics and significant 
instrumentation which are characteristic of actuators limits the applicability the AI 
approaches to fault diagnosis. However, qualitative knowledge and representations and 
heuristics may be useful in two ways: 

(1) To augment conventional approaches such as model-based quantitative methods 
and self-test. This conclusion is especially true if the system is poorly modeled 
such that the performance of model-based analytic approaches is limited. 

(2) To improve the higher level decision-making processes associated with 
diagnostics and failure management. Higher level decision making is largely a 
qualitative task and therefore can be better expressed in that manner. 

Qualitative and imprecise quantitative knowledge, especially in the form of heuristics, have 
been used from the outset in systems such as control systems and fault diagnostic and 
failure management systems. Artificial intelligence, in part, has simply recognized that the 
systematic use of qualitative knowledge is useful in particular situations and therefore has 
created frameworks to facilitate the use of such knowledge. These frameworks are 
sufficiently general to include quantitative knowledge and approaches and to integrate 
knowledge and information from both qualitative and quantitative sources. While our 
conclusion is that qualitative knowledge and approaches will be useful in the context of 
intelligent actuator fault diagnostic and failure management systems, the extent to which 
this is true can only be determined by developing a system for a specific example. 

Another benefit of using artificial intelligence is that there exist powerful 
environments which can facilitate software development and testing. As discussed above, 
even systems that rely on analytic, quantitative approaches contain some heuristics or 
expert knowledge. If more of such knowledge and other qualitative knowledge is used in 
future diagnostic and failure management systems, these AI software environments may be 
helpful in building, modifying, and debugging these systems. This development software, 
however, would probably be too inefficient for real-time use on actuators, requiring a 
conversion to more efficient operating code. If this conversion could be accomplished 
automatically, then the diagnostic and failure management system could be easily refined 
during bench and flight testing and throughout the actuator's lifetime. 
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SECTION 5 

FAULT DIAGNOSIS AND FAILURE MANAGEMENT SYSTEM 
RECOMMENDATIONS AND RELATED ISSUES 

Based on the examination of the FDFM capability of current dual tandem actuators, 
presented in Section 3, and the assessment of AI for application to actuator FDFM, 
presented in the last section, recommendations for improving the FDFM performance of 
dual tandem hydraulic actuators are now presented. The major recommendation, based on 
maintenance data from References 2 and 3, is to improve the FDFM capability to reduce the 
false alarm rate. Other recommendations address latent failures and the modification of the 
control system. These recommendations assume digital processing capability is available 
for the control (in the general sense) of actuators. Therefore, the fault tolerance advantages 
and disadvantages of digitally implementing the FDFM system are considered in Section 
5.2. Section 5.3 presents other possible ideas of using digital processing capability to 
improve the maintainability and performance of actuators. These ideas resulted from 
considering how to use the power of digital processing to improve actuator FDFM. One 
specific idea, a distributed aircraft FDFM approach using actuator and other subsystem 
FDFM information, is discussed further in the final subsection. 

5.1 Recommendations for FDFM ImDrovement 

The recommendations and ideas contained in this section are very general since 
quantitative testing, required to offer more information, was not done. Nevertheless, the 
recommendations provide guidance for improving the FDFM capability on actuators. Ideas 
for reducing the false alarm rate are suggested first. Other ideas for improved FDFM 
capability follow. 

5.1.1 False Alarm Rate Reduction 

The false alarms can be reduced through the use of more sophisticated failure 
detection and isolation approaches. First, to motivate some possible approaches, the 
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possible causes of false alarms are considered. Self tests, presently used exclusively to 
detect LVDT failures (ignoring microprocessor failures), are the least likely source of false 
alarms. Assuming they have been properly designed, self tests are simple and reliable, not 
detecting some failures but unlikely to cause a false alarm. The most likely causes of false 
alarms with direct redundancy are differences in the normal dynamic behavior of the 
redundant components. Dynamic differences are unlikely when using this approach to 
detect sensor or simple electrical component failures. However, some FDFM systems use 
direct redundancy to detect servovalve failures. Dynamic differences of some significance 
are possible with components like servovalves because the dynamics of production copies 
vary. For example, different servovalve copies may have different flow coefficients. 
Also, the component's behavior may change or degrade with time. For example, a null 
shift may occur in the servovalve torque motor. 

The detection tests most likely to produce false alarms are the analytic model-based 
approaches. With analytic redundancy, the cause of false alarms is modeling error. 
Modeling error can result from variations in the production copies of a component. Other 
important causes include significant nonlinearities such as backlash, friction load, 
interleakage, fluid compressibility, and temperature effects. In addition, loads and 
hydraulic supply pressure will change the dynamic behavior. Clearly, modeling errors 
could be reduced by better modeling. However, the model might be fairly complex. In 
addition, incorporating some parameter dependencies explicitly may be of limited value 
since the parameters themselves are unknown (e.g., the interleakage coefficient) or not 
measured (e.g., temperatures and the load). 

Some techniques that might be useful in reducing false alarms are 
Augment the model with heuristics that handle situations for which the model is not 
valid (Reference 24). 

Modify the model, in an approximate manner, to account for some of the variations. 
One example would be to approximately calculate the load based on the deflection 
and the aircraft state (the latter is available from the FCC). 

Use multiple techniques and tests to diagnose failures (Reference 45). These 
techniques could be valid for distinct situations or simply provide redundant 
information to confirm or discredit the results of other tests. For example, a 
decision that a two-stage servovalve has failed could be confmed if the spool is 
moving in the wrong direction. Another possibility might be to use self test to 
detect some failures that a model-based technique cannot. 

Enhance the decision making capability. Some additional capabilities that could 
improve the false alarm rate are reasoning about the quality of the results of the 
different detection tests; using simple causal reasoning to handle the propagation of 
the effects of a failure; distinguishing between failures and minor changes in the 
dynamics; and representing and reasoning about uncertainty. 
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These ideas are fairly simple and conceptually straightforward, yet they should be 
adequate to improve the false alarm performance to a desirable level. Rather than replace 
the conventional techniques, these qualitative and heuristic techniques seek to enhance 
them. 

5.1.2 Other&% 

Several other areas of potential improvement in the performance of FDFM systems 
are in minimizing the risk of latent failures and in modifying the control system following a 
failure. On-off reconfiguration devices are potential latent failures as they may fail in the 
disengaged position. Preflight capability (Reference 17) could be used to ensure that the 
reconfiguration devices are in operating condition prior to takeoff. Modifying a digitally 
implemented control system can be easily accomplished in real-time and thus could be used 
to reduce the performance degradation caused by a failure. 

5.2 Dieital Imdementation of FDFM 

One advantage of digitally implementing the FDFM discussed above is that more 
sophisticated fault diagnosis and failure management techniques can be used. Other 
possible advantages are 

Access to other aircraft information which may be useful in evaluating the cause of 
abnormal behavior of the actuator. 

Fault tolerance. Digitally implemented FDFM design and logic allows, to some 
extent, for processor failures. Failures of the analog and hydraulic implementations 
of the FDFM logic are not considered for the actuators examined in Section 3. 

Ease of maintenance. Replacing a failed processor is simpler than replacing analog 
circuitry or, especially, hydromechanical logic. 
Flexibility (Reference 19). The FDFM system may be changed easier with digital 
implementations than with analog or hydraulic logic. 

While digital FDFM systems have significant advantages relative to analog and 
hydromechanical logic, the digital systems investigated in Section 3 placed limits on the 
FDFM capability possible. To accommodate computer or processor failures, redundant 
computer architectures are required. In Section 3, the design philosophy was to interface 
one processor with one servovalve and one sensor on any of the other components (e.g., 
the LVDT on the power ram). With a failure of any component in that channel, the entire 
channel must be disabled. For example, loss of a LVDT on the power ram eliminates 
necessary information for the control system on the corresponding processor because the 
brickwall communication design approach does not allow information from other LVDTs to 
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be passed to it. Therefore, the current command to the servovalve can no longer be 
generated and the servovalve must be disabled. The brickwall communication design also 
eliminates the ability to detect sensor failures using direct redundancy. Providing sensor 
information and the ability to drive each servovalve to each FCC would improve the FDFM 
capability. Nevertheless, the simplicity of the interface to redundant processors may justify 
the FDFM degradation and inefficient use of resources. 

5.3 Other Possible Benefits of Digital Process ine (&ab ilitv 

Other possible benefits of digital processing to the actuator are the following: 

Information acquisition. The real-time collection and storage of important data 
could help in diagnosis for maintenance purposes and in analysis of the failure or 
false alarm for system software or hardware improvements. 
More precise fault diagnosis for ease of maintenance. While fault diagnosis is only 
required to the level needed for failure management, diagnosing the failure to the 
level necessary for maintenance may be easily possible. The benefit would be 
improved maintainability. 
Performance monitoring. Monitoring could provide two benefits. One would be to 
recognize situations that cause excessive wear of certain components. For example, 
if the performance has degraded for some reason, causing the actuator to oscillate or 
limit cycle, the servovalve coils could heat up and fail in time. Another very related 
benefit would be to recognize performance changes that precede certain failures, 
i.e., anticipation of a failure. If the degradation is sufficiently slow, maintenance 
could be scheduled before the failure occurred. 

Control system modification to maintain acceptable performance in the presence of 
small system changes. These system changes could be small failures such as partial 
shorting or excessive resistance in the servovalve coils or the result of wear or 
aging. Some examples of the latter could be erosion of the ports on the 
servovalves, null shifts in the jet pipe or flapper valves, or increased interleakage 
because of seal degradation. 

Communication with the FCC and pilot. The knowledge of the actuator's status 
could be very useful to the pilot or overall aircraft FDFM system. This capability 
suggests the development of a distributed FDFM system for the overall aircraft. 
Such a system is described further in the following subsection. 
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5.4 A Distributed A h a f t  FDFM Svste m 

Implementing the fault diagnosis and failure management of aircraft subsystems 
digitally would allow the development of a distributed aircraft FDFM system. Fault 
diagnosis and failure management would be done primarily at the subsystem level. 
Information from the various local FDFM systems could also be used at the system level to 
anticipate the propagation of the effects of a failure and perhaps allow other subsystem 
FDFM systems to compensate for them. The greater potential is, however, to allow failure 
management on the system level. 

The present approach to failure management on aircraft is to handle failures on a 
subsystem level. The actuator FDFM system is a good example of this approach. While 
this approach is normally satisfactory, it requires each flight critical subsystem to contain 
adequate redundancy. The result is increased complexity and maintainability and more 
frequent maintenance. Simplifying the aircraft through greater system integration, relying 
more on functional redundancy (as opposed to direct redundancy of similar hardware), to 
accommodate failures, is one approach to simplifying and reducing the need for 
maintenance. 

An example of using system integration to reduce the complexity of military aircraft 
is accommodating actuator and control surface failures and damage by reconfiguring the 
control system (Reference 1). This approach would allow simplex actuators to be used 
instead of dual tandem actuators since the failure of no one surface would be flight critical. 
Two steps presently necessary before reconfiguring the control system are the detection and 
isolation of the failed actuator or surface and the identification of the failure. Identification 
is important to determine how the system dynamics have changed. The present approach 
of detection and isolation is to use analytic failure detection and isolation algorithms. These 
algorithms depend on models of the aircraft and measurements of the state of the aircraft 
(i.e. acceleration, angular velocity, attitude, and position). Despite significant 
investigations by a number of researchers (References 46 - 48), detection and especially 
isolation with these analytic algorithms remains difficult because of modeling errors that are 
inevitably present. In addition, the identification problem is not treated by these 
algorithms. Reference 45 suggests as a partial solution measuring the differential hydraulic 
pressure between the supply and the return to the actuator. References 47 and 48 use the 
measured control surface deflection and a model of the actuator to detect actuator failures 
(along with global algorithms). Reference 49 uses both sources of local information with a 
global algorithm to solve the failure detection, isolation, and identification problem. Local 
information, though, is Q& being used as it is determined to be absolutely necessary to 
solve a specific problem. A better approach would be to develop a distributed aircraft 
FDFM system that systematically uses all the information from the local FDFM system on 
the various subsystems as well as the results from global failure detection, isolation, and 
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identification techniques. With the digital implementation of the actuator FDFM system, 
local information becomes readily available, allowing the development of such a system. 

72 



SECTION 6 

SUMMARY AND CONCLUSIONS 

This report documents an investigation of the fault diagnosis and failure 
management (FDFM) of dual tandem aircraft flight control system actuators. This 
investigation consisted of three parts: (1) an examination of FDFM systems on current 
operational and experimental dual tandem actuators, (2) an assessment of the potential uses 
of artificial intelligence for real-time actuator FDFM, and (3) recommendations for 
development of an improved FDFM capability. 

The FDFM systems examined are evidently adequate to detect and reconfigure for 
component failures that pose a threat to the aircraft. No references to inadequate detection 
performance were found in the limited literature on actuators or their FDFM systems. 
However, the adequate detection performance is apparently achieved only with some 
increase in the false alarm rate. Maintenance data from References 2 and 3 shows that the 
cause of the alarm could not be determined for a significant percentage of the maintenance 
actions. The benefit of reducing the false alarm rate would be to reduce the maintenance 
required for actuators. Examination of the FDFM system also found the possibility for 
latent failures of the on-off reconfiguration devices (the solenoid and bypass valves) 
While the likelihood of such a failure is very small, failing to detect a latent failure could, in 
combination with another failure, result in a serious casualty. 

Three of the six actuator FDFM systems were implemented digitally. While 
digitally implementing the FDFM system allows for significant improvements in the FDFM 
capability and has other fault-tolerance benefits, the present design approach of interfacing 
to a fault-tolerant computer system with redundant processors limits the FDFM 
improvements possible with digital computation. Failures of redundant sensors cannot be 
detected using direct redundancy because one sensor is connected to only one processor 
and the processors do not share FDFM information. Similarly, one processor only drives 
one servovalve, limiting the reconfiguration possible. The result of this interface design, in 
general, is that the response to failures of a processor or one of the LVDTs supplying 
information necessary for control is to disable the corresponding servovalve. Presumably, 
the simplicity of the interface justifies the unnecessary degradation in performance and the 
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reduced reliability. However, fault-tolerant computational architectures now exist that 
provide reliable and much more flexible interface to both sensors and actuators. 

In assessing the applicability of AI for real-time actuator FDFM, existing artificial 
intelligence approaches and applications of FDFM were examined. The emphasis of these 
approaches was almost exclusively on fault isolation; failure detection was either assumed 
or provided by conventional techniques, and failure management was not addressed. The 
basic AI approach to fault isolation is to search through a causal model of the system, 
which describes how the components and subsystems are interconnected and influence 
each other, to determine the failed element(s). Causal knowledge is used to guide the 
selection of failure candidates, Failure candidates are then tested by simulating the effect of 
the failure to determine how well they explain the deviant behavior of the system. Some of 
the AI fault diagnosis systems differed from conventional approaches in that they simulated 
the effect of the failure qualitatively. 

Using search and a causal model has limited applicability for real-time actuator fault 
isolation. With the limited number of components and the high sensor-to-component ratio, 
explicitly searching through a causal model is unnecessary. The developer of an actuator 
FDFM system implicitly uses a causal model to isolate failures in an efficient manner. 
Fault isolation via causal models appears most applicable to large complex systems. 
Qualitatively describing the behavior of an actuator also appears to be of limited benefit for 
actuators, since qualitative descriptions lack the precision required for high quality fault 
diagnosis of fast dynamic systems. 

Heuristics and other qualitative knowledge, however, have the potential to enhance 
the FDFM capability on actuators in two ways. One use of qualitative and approximate 
quantitative knowledge would be to augment the conventional detection approaches. 
Whether augmenting the conventional approaches is actually useful depends on the ability 
of current methods to easily and accurately describe the actuator's behavior. This ability is 
questionable in the presence of significant nonlinearities (backlash, friction load, 
interleakage, fluid compressability, and temperature effects), variations in the dynamics of 
the actuator production copies due to variations in the valve flow and interleakage 
coefficients, and variable loads and hydraulic supply pressures. The second use of 
heuristics and qualitative knowledge would be to improve the higher level decision-making 
processes associated with diagnostics and failure management. Higher level decision 
making is presently, in general, a qualitative task and therefore can be better expressed in 
that manner. 

Based on the results of the AI assessment, possible methods of applying heuristics 
and qualitative knowledge for reducing the false alarm rate were suggested. Other 
recommendations were to use preflight testing to check the on-off reconfiguration devices 
for latent failures and to modify the control system in flight to recover some of the 
performance degradation following a failure. None of the actuators having a digitally 
implemented control system modified the control system following a failure. Additional 
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capabilities to improve the maintainability and performance of the actuator were also 
suggested. Finally, using subsystem FDFM information in combination with overall 
aircraft FDFM information to create a reliable and integrated aircraft FDFM system was 
advocated. 

While AI has limited applicability to local actuator FDFM, AI may have greater 
potential when applied to more complex systems. One possible approach of using AI for 
these systems would be to pose some of the FDFM tasks, for which existing techniques are 
inadequate, as search (i.e., generate and test) problems. Existing quantitative, analytic 
approaches would still be used, their purpose, however, would be to severely prune the 
search space. Other knowledge and information, including that of qualitative nature (causal 
reasoning, unusual situations, etc.), could also be used to help direct the search process. 
This approach differs from the traditional approach of developing and using a single 
quantitative solution (or algorithm) in two basic ways. First, this approach allows the use 
of a number of different techniques. Problem solving techniques are typically well suited 
for a specific subset of the problem domain of interest. By using multiple approaches 
which are well suited for different aspects of the problem, a better overall problem solving 
algorithm may result. Second, this alternative solution approach can use qualitative and 
heuristic knowledge as an integral part of the solution process, whereas the traditional 
solution approach adds heuristics only if the analytic quantitative technique is, in some 
way, inadequate. 

Based on the result of this investigation, several areas of possible further 
investigation are 

(1) Developing and testing an FDFM system combining heuristics and other 
qualitative knowledge with conventional approaches of self test, direct 
redundancy, and analytic model-based techniques. Such an effort would allow 
specific recommendations for improving the FDFM capability. 

(2) Investigating the application of AI to the real-time FDFM of more complex 
systems. One specific problem that could potentially benefit from using a 
limited search process is restructurable or reconfigurable control. The purpose 
of restructurable control is to accommodate actuator and control surface failures 
and damage by modifying the control system. The benefits would be tolerance 
to control surface damage and the reduction of actuator (and therefore system) 
complexity. The latter results because simplex actuators can be used on all 
aircraft control surfaces since the failure of no one control surface would be 
flight critical. 

In general, the restructurable control solution process consists of three steps: (1) 
failure detection, isolation, and identification, (2) recovery and retrimming of 
the aircraft, and (3) control system modification. Failure identification is 
important to determine how the system dynamics have changed. A new aircraft 



dynamic model will greatly aid in solving steps 2 and 3. Some failures may 
require immediate action to oppose the effect of the failure and to find a new 
flight condition where the aircraft may be stabilized. Control system 
modification would improve the aircraft performance and, perhaps, stability. 
The first two steps of the restructurable control process are, for some failures, 
difficult problems which might benefit from the use of the alternative search 
solution approach. For example, identifying the aircraft model with the partial 
loss of a control surface may be difficult even using both global and local 
techniques as advocated in Section 5.4. However, limited search based on all 
the available information and an understanding of the effects of such a failure 
could potentially produce an adequate model. Recovering the aircraft following 
a significant jam failure may also be difficult as it is a highly nonlinear problem. 
The appropriate response of the control surfaces and, perhaps, the engine(s) 
must be chosen and the flight conditions at which the aircraft can be stabilized 
must be determined. 
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